首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In bone biology, epigenetics plays a key role in mesenchymal stem cells' (MSCs) commitment towards osteoblasts. It involves gene regulatory mechanisms governed by chromatin modulators. Predominant epigenetic mechanisms for efficient osteogenic differentiation include DNA methylation, histone modifications, and non-coding RNAs. Among these mechanisms, histone modifications critically contribute to altering chromatin configuration. Histone based epigenetic mechanisms are an essential mediator of gene expression during osteoblast differentiation as it directs the bivalency of the genome. Investigating the importance of histone modifications in osteogenesis may lead to the development of epigenetic-based remedies for genetic disorders of bone. Hence, in this review, we have highlighted the importance of epigenetic modifications such as post-translational modifications of histones, including methylation, acetylation, phosphorylation, ubiquitination, and their role in the activation or suppression of gene expression during osteoblast differentiation. Further, we have emphasized the future advancements in the field of epigenetics towards orthopaedical therapeutics.  相似文献   

3.
Maradeo ME  Cairns P 《FEBS letters》2011,585(13):2112-2120
Cancer is a disease initiated and driven by the accumulation and interplay of genetic and epigenetic mutations of genes involved in the regulation of cell growth and signaling. Dysregulation of these genes and pathways in a cell leads to a growth advantage and clonal expansion. The epigenetic alterations involved in the initiation and progression of cancer are DNA methylation and histone modifications which interact to remodel chromatin, as well as RNA interference. These alterations can be used as candidate targets in molecular tests for risk, early detection, prognosis, prediction of response to therapy, and monitoring, as well as new therapeutic targets in cancer. In this review, we discuss the rationale, studies to date, and issues in the translational application of epigenetics using epithelial ovarian cancer as a specific example of all types of cancer.  相似文献   

4.
The term epigenetics is defined as inheritable changes that influence the outcome of a phenotype without changes in the genome. Epigenetics is based upon DNA methylation and posttranslational histone modifications. While there is much known about reversible acetylation as a posttranslational modification, research on reversible histone methylation is still emerging, especially with regard to drug discovery. As aberrant epigenetic modifications have been linked to many diseases, inhibitors of histone modifying enzymes are very much in demand. This article will summarize the progress on small molecule epigenetic inhibitors identified by structure- and computer-based approaches.  相似文献   

5.
The metastatic cascade which leads to the death of cancer patients results from a multi‐step process of tumour progression caused by genetic and epigenetic alterations in key regulatory molecules. It is, therefore, crucial to improve our understanding of the regulation of genes controlling the metastatic process to identify predictive biomarkers and to develop more effective therapies to treat advanced disease. The study of epigenetic mechanisms of gene regulation offers a novel approach for innovative diagnosis and treatment of cancer patients. Recent discoveries provide compelling evidence that the methylation landscape (changes in both DNA methylation and histone post‐translational modifications) is profoundly altered in cancer cells and contributes to the altered expression of genes regulating tumour phenotypes. However, the impact of methylation events specifically on the advanced metastatic process is poorly understood compared with the initial oncogenic events. Moreover, the characterisation of a large number of histone‐modifying enzymes has revealed their active roles in cancer progression, via the regulation of specific target genes controlling different metastatic phenotypes. Here, we discuss two main methylating events (DNA methylation and histone‐tail methylation) involved in oncogenesis and metastasis formation. The potential reversibility of these molecular events makes them promising biomarkers of metastatic potential and potential therapeutic targets.  相似文献   

6.
Pan Z  Zhang J  Li Q  Li Y  Shi F  Xie Z  Liu H 《遗传学报》2012,39(3):111-123
During the growth and development of mammalian ovarian follicles, the activation and deactivation of mass genes are under the synergistic control of diverse modifiers through genetic and epigenetic events. Many factors regulate gene activity and functions through epigenetic modification without altering the DNA sequence, and the common mechanisms may include but are not limited to: DNA methylation, histone modifications (e.g., acetylation, deacetylation, phosphorylation, methylation, and ubiquitination), and RNA-associated silencing of gene expression by noncoding RNA. Over the past decade, substantial progress has been achieved in studies involving the epigenetic alterations during mammalian germ cell development. A number of candidate regulatory factors have been identified. This review focuses on the current available information of epigenetic alterations (e.g., DNA methylation, histone modification, noncoding-RNA-mediated regulation) during mammalian folliculogenesis and recounts when and how epigenetic patterns are differentially established, maintained, or altered in this process. Based on different types of epigenetic regulation, our review follows the temporal progression of events during ovarian folliculogenesis and describes the epigenetic changes and their contributions to germ cell-specific functions at each stage (i.e., primordial folliculogenesis (follicle formation), follicle maturation, and follicular atresia).  相似文献   

7.
Through the classic study of genetics, much has been learned about the regulation and progression of human disease. Specifically, cancer has been defined as a disease driven by genetic alterations, including mutations in tumor-suppressor genes and oncogenes, as well as chromosomal abnormalities. However, the study of normal human development has identified that in addition to classical genetics, regulation of gene expression is also modified by ‘epigenetic’ alterations including chromatin remodeling and histone variants, DNA methylation, the regulation of polycomb group proteins, and the epigenetic function of non-coding RNA. These changes are modifications inherited during both meiosis and mitosis, yet they do not result in alterations of the actual DNA sequence. A number of biological questions are directly influenced by epigenetics, such as how does a cell know when to divide, differentiate or remain quiescent, and more importantly, what happens when these pathways become altered? Do these alterations lead to the development and/or progression of cancer? This review will focus on summarizing the limited current literature involving epigenetic alterations in the context of human cancer stems cells (CSCs). The extent to which epigenetic changes define cell fate, identity, and phenotype are still under intense investigation, and many questions remain largely unanswered. Before discussing epigenetic gene silencing in CSCs, the different classifications of stem cells and their properties will be introduced. This will be followed by an introduction to the different epigenetic mechanisms. Finally, there will be a discussion of the current knowledge of epigenetic modifications in stem cells, specifically what is known from rodent systems and established cancer cell lines, and how they are leading us to understand human stem cells.  相似文献   

8.
人恶性黑色素瘤(malignant melanoma)是近年来高发病率和高死亡率的肿瘤之一.目前尚缺乏有效的治疗方法.而表观遗传如DNA甲基化(DNA methylation)、组蛋白修饰(histonemodification)、染色质重塑(chromatin remodeling)及RNA干扰(RNA interference,RNAi)等改变在人黑色素瘤的发生、发展和转移中有重要作用.阐明黑色素瘤发生发展的表观遗传学机制已引起了学者的普遍关注.本文综述了人类黑色素瘤发生发展中所特异的表观遗传改变:CpG岛的异常甲基化修饰、组蛋白甲基化和乙酰化修饰、染色质重塑以及microRNA在黑色素瘤发生和转移中的作用,并对应用表观遗传修饰治疗人类黑色素瘤进行了探讨.  相似文献   

9.
The sleep-wake cycle is a biological phenomena under the orchestration of neurophysiological, neurochemical, neuroanatomical, and genetical mechanisms. Moreover, homeostatic and circadian processes participate in the regulation of sleep across the light–dark period. Further complexity of the understanding of the genesis of sleep engages disturbances which have been characterized and classified in a variety of sleep–wake cycle disorders. The most prominent sleep alterations include insomnia as well as excessive daytime sleepiness. On the other side, several human diseases have been linked with direct changes in DNA, such as chromatin configuration, genomic imprinting, DNA methylation, histone modifications (acetylation, methylation, ubiquitylation or sumoylation, etc.), and activating RNA molecules that are transcribed from DNA but not translated into proteins. Epigenetic theories primarily emphasize the interaction between the environment and gene expression. According to these approaches, the environment to which mammals are exposed has a significant role in determining the epigenetic modifications occurring in chromosomes that ultimately would influence not only development but also the descendants’ physiology and behavior. Thus, what makes epigenetics intriguing is that, unlike genetic variation, modifications in DNA are altered directly by the environment and, in some cases, these epigenetic changes may be inherited by future generations. Thus, it is likely that epigenetic phenomena might contribute to the homeostatic and/or circadian control of sleep and, possibly, have an undescribed link with sleep disorders. An exciting new horizon of research is arising between sleep and epigenetics since it represents the relevance of the study of how the genome learns from its experiences and modulates behavior, including sleep.  相似文献   

10.
In the last three decades huge efforts have been made to characterize genetic defects responsible for cancer development and progression, leading to the comprehensive identification of distinct cellular pathways affected by the alteration of specific genes. Despite the undoubtable role of genetic mechanisms in triggering neoplastic cell transformation, epigenetic modifications (i.e., heritable changes of gene expression that do not derive from alterations of the nucleotide sequence of DNA) are rapidly emerging as frequent alterations that often occur in the early phases of tumorigenesis and that play an important role in tumor development and progression. Epigenetic alterations, such as modifications in DNA methylation patterns and post-translational modifications of histone tails, behave extremely different from genetic modifications, being readily revertable by "epigenetic drugs" such as inhibitors of DNA methyl transferases and inhibitors of histone deacetylases. Since epigenetic alterations in cancer cells affect virtually all cellular pathways that have been associated to tumorigenesis, it is not surprising that epigenetic drugs display pleiotropic activities, being able to concomitantly restore the defective expression of genes involved in cell cycle control, apoptosis, cell signaling, tumor cell invasion and metastasis, angiogenesis and immune recognition. Prompted by this emerging clinical relevance of epigenetic drugs, this review will focus on the large amount of available data, deriving both from in vitro experimentations and in vivo pre-clinical and clinical studies, which clearly indicate epigenetic drugs as effective modifiers of cancer phenotype and as positive regulators of tumor cell biology with a relevant therapeutic potential in cancer patients.  相似文献   

11.
12.
13.
14.
15.
肿瘤表观基因组学研究进展   总被引:1,自引:1,他引:0  
多年来遗传学改变一直是肿瘤研究的焦点,近来人们越来越认识到异常表观遗传修饰在肿瘤形成中所起的重要作用。表观遗传修饰包括DNA甲基化、组蛋白修饰等,其变异会导致基因转录异常。表观基因组学是在基因组水平上对表观遗传学改变的研究。文章主要介绍目前已知的肿瘤表观基因组学相关内容,阐述表观遗传修饰与肿瘤的紧密关系及异常表观遗传修饰作为生物标记在肿瘤诊断、预后及治疗方面的最新研究进展。  相似文献   

16.
表观遗传学: 生物细胞非编码RNA调控的研究进展   总被引:7,自引:0,他引:7  
于红 《遗传》2009,31(11):1077-1086
表观遗传学是研究基因表达发生了可遗传的改变, 而DNA序列不发生改变的一门生物学分支, 对细胞的生长分化及肿瘤的发生发展至关重要。表观遗传学的主要机制包括DNA甲基化、组蛋白修饰及新近发现的非编码RNA。非编码RNA 是指不能翻译为蛋白的功能性RNA分子, 其中常见的具调控作用的非编码RNA包括小干涉RNA、miRNA、piRNA 以及长链非编码RNA。近年来大量研究表明非编码RNA在表观遗传学的调控中扮演了越来越重要的角色。文章综述了近年来生物细胞非编码RNA调控的表观遗传学研究进展, 以有助于理解哺乳动物细胞中非编码RNA及其调控机制和功能。  相似文献   

17.
Epigenetics pertains to heritable alterations in genomic structural modifications without altering genomic DNA sequence. The studies of epigenetic mechanisms include DNA methylation, histone modifications, and microRNAs. DNA methylation may contribute to silencing gene expression which is a major mechanism of epigenetic gene regulation. DNA methylation regulatory mechanisms in lens development and pathogenesis of cataract represent exciting areas of research that have opened new avenues for association with aging and environment. This review addresses our current understanding of the major mechanisms and function of DNA methylation in lens development, age-related cataract, secondary cataract, and complicated cataract. By understanding the role of DNA methylation in the lens disease and development, it is expected to open up a new therapeutic approach to clinical treatment of cataract.  相似文献   

18.
植物中表观遗传修饰研究进展   总被引:1,自引:1,他引:1  
郑小国  陈亮  罗利军 《植物学报》2013,48(5):561-572
表观遗传是指DNA序列不发生变化, 但基因表达发生了可遗传的改变, 主要涉及DNA与染色体上的一些可逆修饰以及一些转录调控机制。DNA甲基化、组蛋白修饰和非编码RNA调控是表观遗传学研究的三大支柱。三者在植物生长发育、应对生物和非生物胁迫以及适应环境变化中发挥着极其重要的作用。该文综述了植物中DNA甲基化、组蛋白修饰、非编码RNA调控的研究进展及其对植物株高、生育期、花型、果实着色以及应对环境胁迫等方面的影响。  相似文献   

19.
Epigenetics pertains to heritable alterations in gene expression that do not involve modification of the underlying genomic DNA sequence. Historically, the study of epigenetic mechanisms has focused on DNA methylation and histone modifications, but the concept of epigenetics has been more recently extended to include microRNAs as well. Epigenetic patterning is modified by environmental exposures and may be a mechanistic link between environmental risk factors and the development of disease. Epigenetic dysregulation has been associated with a variety of human diseases, including cancer, neurological disorders, and autoimmune diseases. In this review, we consider the role of epigenetics in common ocular diseases, with a particular focus on DNA methylation and microRNAs. DNA methylation is a critical regulator of gene expression in the eye and is necessary for the proper development and postmitotic survival of retinal neurons. Aberrant methylation patterns have been associated with age-related macular degeneration, susceptibility to oxidative stress, cataract, pterygium, and retinoblastoma. Changes in histone modifications have also been observed in experimental models of diabetic retinopathy and glaucoma. The expression levels of specific microRNAs have also been found to be altered in the context of ocular inflammation, retinal degeneration, pathological angiogenesis, diabetic retinopathy, and ocular neoplasms. Although the complete spectrum of epigenetic modifications remains to be more fully explored, it is clear that epigenetic dysregulation is an important contributor to common ocular diseases and may be a relevant therapeutic target.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号