首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
South American tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) is a devastating invasive global insect pest of tomato, Solanum lycopersicum (Solanaceae). In nature, pests face multiple overlapping environmental stressors, which may significantly influence survival. To cope with rapidly changing environments, insects often employ a suite of mechanisms at both acute and chronic time-scales, thereby improving fitness at sub-optimal thermal environments. For T. absoluta, physiological responses to transient thermal variability remain under explored. Moreso, environmental effects and physiological responses may differ across insect life stages and this can have implications for population dynamics. Against this background, we investigated short and long term plastic responses to temperature of T. absoluta larvae (4th instar) and adults (24–48 h old) from field populations. We measured traits of temperature tolerance vis critical thermal limits [critical thermal minima (CTmin) and maxima (CTmax)], heat knockdown time (HKDT), chill coma recovery time (CCRT) and supercooling points (SCP). Our results showed that at the larval stage, Rapid Cold Hardening (RCH) significantly improved CTmin and HKDT but impaired SCP and CCRT. Heat hardening in larvae impaired CTmin, CCRT, SCP, CTmax but not HKDT. In adults, both heat and cold hardening generally impaired CTmin and CTmax, but had no effects on HKDT, SCP and CCRT. Low temperature acclimation significantly improved CTmin and HKDT while marginally compromising CCRT and CTmax, whereas high temperature acclimation had no significant effects on any traits except for HKDT in larvae. Similarly, low and high temperature acclimation had no effects on CTmin, SCPs and CTmax, while high temperature acclimation significantly compromised adult CCRT. Our results show that larvae are more thermally plastic than adults and can shift their thermal tolerance in short and long timescales. The larval plasticity reported here could be advantageous in new envirnments, suggesting an asymmetrical ecological role of larva relative to adults in facilitating T. absoluta invasion.  相似文献   

2.
Understanding the response of aquatic organisms to elevated water temperatures offers insight into the ecological consequences of climate change on riverine species. Upper thermal limits were determined for two riverine invertebrates, the amphipod Paramelita nigroculus (Paramelitidae) and the mayfly Lestagella penicillata (Teloganodidae), in two rivers in the south-western Cape, South Africa. Limits were estimated using the critical thermal method (reflected as the critical thermal maxima—CTmax) and the incipient lethal temperature method (reflected as the incipient lethal upper limit—ILUT). Thermal signatures of these rivers were characterized using hourly water temperatures. CTmax for seasonally acclimatized and laboratory-acclimated P. nigroculus varied significantly amongst months and acclimation temperature. CTmax for seasonally acclimatized L. penicillata varied significantly amongst months, but not with acclimation temperature. 96-h ILUT values for seasonally acclimatized individuals varied significantly amongst months for both species. CTmax values, 96-h ILUT and Maximum Weekly Allowable Temperature thresholds were lower for P. nigroculus compared to L. penicillata. Seven-day moving averages of daily mean and maximum water temperatures were significantly correlated with upper thermal limits for seasonally acclimatized L. penicillata but not P. nigroculus. The proportion of time within a 24-h period that chronic thermal stress thresholds are not exceeded provides a measure of monthly or seasonal chronic thermal stress, and reflects the quantity of temporal thermal refugia for vulnerable organisms. Further testing of these relationships for other species, rivers and regions is recommended, to evaluate the potential for stream temperature averaging statistics to serve as proxies for biological thresholds.  相似文献   

3.
As stream temperatures increase due to factors such as heated runoff from impervious surfaces, deforestation, and climate change, fish species adapted to cold water streams are forced to move to more suitable habitat, acclimate or adapt to increased thermal regimes, or die. To estimate the potential for adaptation, a (within individual) repeatable metric of thermal tolerance is imperative. Critical thermal maximum (CTmax) is a dynamic test that is widely used to measure thermal tolerance across many taxa and has been used in fishes for decades, but its repeatability in most species is unknown. CTmax tests increase water temperature steadily over time until loss of equilibrium (LOE) is achieved. To determine if CTmax is a consistent metric within individual fish, we measured CTmax on the same lab-held individually-marked adult brook trout Salvelinus fontinalis at three different times (August & September 2016, September 2017). We found that CTmax is a repeatable trait (Repeatability ± S.E.: 0.48 ± 0.14). CTmax of individuals males was consistent over time, but the CTmax of females increased slightly over time. This result indicates that CTmax is a robust, repeatable estimate of thermal tolerance in a cold-water adapted fish.  相似文献   

4.
Temperature strongly affects performance in ectotherms. As ocean warming continues, performance of marine species will be impacted. Many studies have focused on how warming will impact physiology, life history, and behavior, but few studies have investigated how ecological and behavioral traits of organisms will affect their response to changing thermal environments. Here, we assessed the thermal tolerances and thermal sensitivity of swimming performance of two sympatric mysid shrimp species of the Northwest Atlantic. Neomysis americana and Heteromysis formosa overlap in habitat and many aspects of their ecological niche, but only N. americana exhibits vertical migration. In temperate coastal ecosystems, temperature stratification of the water column exposes vertical migrators to a wider range of temperatures on a daily basis. We found that N. americana had a significantly lower critical thermal minimum (CTmin) and critical thermal maximum (CTmax). However, both mysid species had a buffer of at least 4 °C between their CTmax and the 100-year projection for mean summer water temperatures of 28 °C. Swimming performance of the vertically migrating species was more sensitive to temperature variation, and this species exhibited faster burst swimming speeds. The generalist performance curve of H. formosa and specialist curve of N. americana are consistent with predictions based on the exposure of each species to temperature variation such that higher within-generation variability promotes specialization. However, these species violate the assumption of the specialist-generalist tradeoff in that the area under their performance curves is not constant. Our results highlight the importance of incorporating species-specific responses to temperature based on the ecology and behavior of organisms into climate change prediction models.  相似文献   

5.
We studied the thermal tolerances of Rhinella arenarum during the dry and wet seasons of the Monte Desert in San Juan Province, Argentina. This toad had differences in CTmax between dry and wet seasons, and the CTmax values were higher in the wet season (Austral summer). Operative temperature, body temperature, environmental maximal temperature, and relative humidity were related to CTmax, suggesting seasonal acclimatization of R. arenarum. Additionally, the CTmax recorded for R. arenarum was 36.2 °C, and the maximum ambient temperature recorded during the toads' activity time was 37 °C. Also, the CTmin recorded for R. arenarum was 5.3 °C and the minimum environmental temperature recorded was 7.2 °C. The wide thermal tolerance range recorded and the relationship between tolerance limits and the environmental extremes indicate that seasonal acclimatization is an effective mechanism by which toads can raise their thermal tolerance, allowing them to survive in the challenging conditions of the Monte Desert. Additional studies are needed to understand the relationship between the thermal tolerance of this desert amphibian and the environmental parameters that influence its thermal physiology.  相似文献   

6.
Rhinella spinulosa is one of the anuran species with the greatest presence in Chile. This species mainly inhabits mountain habitats and is distributed latitudinally along the western slope of the Andes Range. These habitats undergo great temperature fluctuations, exerting pressure on the amphibian. To identify the physiological strategies and thermal behavior of this species, we analyzed the temperature variables CTmin, CTmax, TTR, τheat, and τcool in individuals of three sites from a latitudinal gradient (22°S to 37°S). The amphibians were acclimated to 10 °C and 20 °C and fed ad libitum. The results indicate that the species has a high thermal tolerance range, with a mean of 38.14±1.34 °C, a critical thermal maxima of 34.6–41.4 °C, and a critical thermal minima of 2.6–0.8 °C, classifying the species as eurythermic. Furthermore, there were significant differences in CTmáx and TTR only in the northern site. The differences in thermal time constants between sites are due to the effects of size and body mass. For example, those from the central site had larger size and greater thermal inertia; therefore, they warmed and cooled in a slower manner.The wide thermal limits determined in R. spinulosa confirm that it is a thermo-generalist species, a characteristic that allows the species to survive in adverse microclimatic conditions. The level of plasticity in critical temperatures seems ecologically relevant and supports the acclimatization of thermal limits as an important factor for ectothermic animals to adapt to climate change.  相似文献   

7.
Intraspecific variation in physiological traits and the standard metabolic rate (SMR) is common in widely distributed ectotherms since populations at contrasting latitudes experiences different thermal conditions. The climatic variability hypothesis (CVH) states that populations at higher latitudes presents higher acclimation capacity than those at lower latitudes, given the wider range of climatic variability they experience. The endemic four-eyed frog, Pleurodema thaul is widely distributed in Chile. We examined the variation in maximum and minimum critical temperatures (CTmax and CTmin), preferred temperature (TPref), SMR and their acclimatory capacity in two populations from the northern and center of its distribution. All the traits are higher in the warmer population. The capacity for acclimation varies between traits and, with the exception of CTmax and TPref, it is similar between populations. This pattern could be explained by the higher daily thermal variability in desert environments, that increases plasticity to the levels found in the high latitude population. However, we found low acclimatory capacity in all physiological traits, of only about 3% for CTmin, 10% for CTmax and TPref, and 1% for SMR. Thus, despite the fact that Pleurodema thaul possess some ability to adjust thermal tolerances in response to changing thermal conditions, this acclimatory capacity seems to be unable to prevent substantial buffering when body temperatures rise. The low acclimatory capacity found for P. thaul suggests that this species use behavioral rather than physiological adjustments to compensate for environmental variation, by exploiting available micro-environments with more stable thermal conditions.  相似文献   

8.
The upper thermal limits of two cold-water stenotherms: the mayfly, Lestagella penicillata (Teloganodidae), and the stonefly, Aphanicerca capensis (Notonemouridae), were determined from six rivers in the Western Cape, South Africa. Limits were estimated using the Critical Thermal Method (expressed as Critical Thermal maximum) and the Incipient Lethal Temperature method (expressed as Incipient Lethal Upper Limit). Hourly water temperatures recorded in these rivers were used to characterise thermal signatures. Median CTmax and 96 h ILUT varied significantly amongst rivers for both species (≤5.7°C for CTmax and ≤4.0°C for 96 h ILUT) and variation was similar for both species. Differences in water temperature amongst rivers during the experimental period (spring) were insufficient (<2.0°C) to confirm the relationship between upper thermal limits and thermal history, expressed as an averaging statistic derived from in situ water temperatures. Greatest thermal range was over the warm summer period (>8.0°C) and it is likely that this is when thermal history may influence thermal limits. Maximum Weekly Allowable Temperature thresholds averaged for all rivers were lower for A. capensis (17.0°C) compared to L. penicillata (19.0°C). Both species have life cycles that allow them to avoid the thermally stressful summer period.  相似文献   

9.
Insect thermal tolerance shows a range of responses to thermal history depending on the duration and severity of exposure. However, few studies have investigated these effects under relatively modest temperature variation or the interactions between short‐ and longer‐term exposures. In the present study, using a full‐factorial design, 1 week‐long acclimation responses of critical thermal minimum (CTmin) and critical thermal maximum (CTmax) to temperatures of 20, 25 and 30 °C are investigated, as well as their interactions with short‐term (2 h) sub‐lethal temperature exposures to these same conditions (20, 25 and 30 °C), in two fruit fly species Ceratitis capitata (Wiedemann) and Ceratitis rosa Karsch from South Africa. Flies generally improve heat tolerance with high temperature acclimation and resist low temperatures better after acclimation to cooler conditions. However, in several cases, significant interaction effects are evident for CTmax and CTmin between short‐ and long‐term temperature treatments. Furthermore, to better comprehend the flies' responses to natural microclimate conditions, the effects of variation in heating and cooling rates on CTmax and CTmin are explored. Slower heating rates result in higher CTmax, whereas slower cooling rates elicit lower CTmin, although more variation is detected in CTmin than in CTmax (approximately 1.2 versus 0.5 °C). Critical thermal limits estimated under conditions that most closely approximate natural diurnal temperature fluctuations (rate: 0.06 °C min?1) indicate a CTmax of approximately 42 °C and a CTmin of approximately 6 °C for these species in the wild, although some variation between these species has been found previously in CTmax. In conclusion, the results suggest critical thermal limits of adult fruit flies are moderated by temperature variation at both short and long time scales and may comprise both reversible and irreversible components.  相似文献   

10.
Critical thermal maximum (CTmax) is widely used to measure upper thermal tolerance in fish but is rarely examined in embryos. Upper thermal limits generally depend on an individual's thermal history, which molds plasticity. We examined how thermal acclimation affects thermal tolerance of brook trout (Salvelinus fontinalis) embryos using a novel method to assess CTmax in embryos incubated under three thermal regimes. Warm acclimation was associated with an increase in embryonic upper thermal tolerance. However, CTmax variability was markedly higher than is typical for juvenile or adult salmonids.  相似文献   

11.
1. Thermal tolerance has a strong predictive power for understanding the ecology and distribution of organisms, as well as their responses to changes in land use and global warming. However, relatively few studies have assessed thermal tolerances for bees. 2. The present study aimed to determine whether the critical thermal maximum (CTmax) of carpenter bees (Apidae: genus Xylocopa Latreille) varies with different patterns of foraging activity and elevation. In addition, the influence of body size, body water content and relative age was examined with respect to their CTmax and differences in thoracic temperature (Tth) among species were evaluated. 3. The CTmax of one crepuscular (Xylocopa olivieri) and two diurnal species (Xylocopa violacea and Xylocopa iris) of carpenter bees was assessed at sea level on the Greek island of Lesvos. To detect variation as a result of elevation, the CTmax of a population of X. violacea at 625 m.a.s l. was assessed and compared with that from sea level. 4. Xylocopa olivieri displayed a similar CTmax to that of X. violacea but lower than that of X. iris. Body size, body water content, and relative age did not affect CTmax. In X. violacea, CTmax decreased with elevation and all three species have high Tth independent of ambient temperatures. 5. The results of the present study are consistent with variations in CTmax predicted by broad spatial and temporal patterns reported for other insects, including honey and bumble bees. The implications of the results are discussed aiming to understand the differences in the foraging pattern of these bees.  相似文献   

12.
Predicting the effects of high environmental temperatures and drought on populations requires understanding how these conditions will influence the thermoregulatory behavior and thermal tolerance of organisms. Ectotherms show proportional (fine-tuned) and all-or-none (abrupt) responses to avoid overheating. Scattered evidence suggests that dehydration alters these behavioral responses and thermal tolerance, but these effects have not been evaluated in an integrative manner. We examined the effects of hydration level on the behavioral thermoregulation and behavioral and physiological thermal limits of the “bullfrog” (Rana catesbeiana), a well-studied and important invasive species. To examine the effects of dehydration on proportional responses, we compared the Preferred Body Temperatures (PBT) of frogs with restricted and unrestricted access to water. To assess the effect of dehydration on all-or-none responses, we measured and compared the Voluntary Thermal Maximum (VTMax) at different hydration levels (100%, 90%, 80% of body weight at complete hydration). Finally, to understand the effect of dehydration on physiological thermal tolerance, we measured the Critical Thermal Maximum (CTMax) of frogs at matched hydration levels. PBT, VTMax, and CTMax all decreased in response to higher dehydration levels. However, bullfrogs changed their PBT more than their VTMax or CTMax in response to dehydration. Moreover, some severely dehydrated individuals did not exhibit a VTMax response. We discuss the implications of our results in the context of plasticity of thermoregulatory responses and thermal limits, and its potential application to mechanistic modeling.  相似文献   

13.
Thermal limits of insects can be influenced by recent thermal history: here we used thermolimit respirometry to determine metabolic rate responses and thermal limits of the dominant meat ant, Iridomyrmex purpureus. Firstly, we tested the hypothesis that nest surface temperatures have a pervasive influence on thermal limits. Metabolic rates and activity of freshly field collected individuals were measured continuously while ramping temperatures from 44 °C to 62 °C at 0.25 °C/minute. At all the stages of thermolimit respirometry, metabolic rates were independent of nest surface temperatures, and CTmax did not differ between ants collected from nest with different surface temperatures. Secondly, we tested the effect of brain control on upper thermal limits of meat ants via ant decapitation experiments (‘headedness’). Decapitated ants exhibited similar upper critical temperature (CTmax) results to living ants (Decapitated 50.3±1.2 °C: Living 50.1±1.8 °C). Throughout the temperature ramping process, ‘headedness’ had a significant effect on metabolic rate in total (Decapitated CO2 140±30 µl CO2 mg−1 min−1: Living CO2 250±50 CO2 mg−1 min−1), as well as at temperatures below and above CTmax. At high temperatures (>44 °C) pre- CTmax the relationships between I. purpureus CTmax values and mass specific metabolic rates for living ants exhibited a negative slope whilst decapitated ants exhibited a positive slope. The decapitated ants also had a significantly higher Q10:25–35 °C when compared to living ants (1.91±0.43 vs. 1.29±0.35). Our findings suggest that physiological responses of ants may be able to cope with increasing surface temperatures, as shown by metabolic rates across the thermolimit continuum, making them physiologically resilient to a rapidly changing climate. We also demonstrate that the brain plays a role in respiration, but critical thermal limits are independent of respiration levels.  相似文献   

14.
Thermal adaptation theory predicts that thermal specialists evolve in environments with low temporal and high spatial thermal variation, whereas thermal generalists are favored in environments with high temporal and low spatial variation. The thermal environment of many organisms is predicted to change with globally increasing temperatures and thermal specialists are presumably at higher risk than thermal generalists. Here we investigated critical thermal maximum (CTmax) and preferred temperature (Tp) in populations of the common pond snail (Radix balthica) originating from a small‐scale system of geothermal springs in northern Iceland, where stable cold (ca. 7°C) and warm (ca. 23°C) habitats are connected with habitats following the seasonal thermal variation. Irrespective of thermal origin, we found a common Tp for all populations, corresponding to the common temperature optimum (Topt) for fitness‐related traits in these populations. Warm‐origin snails had lowest CTmax. As our previous studies have found higher chronic temperature tolerance in the warm populations, we suggest that there is a trade‐off between high temperature tolerance and performance in other fitness components, including tolerance to chronic thermal stress. Tp and CTmax were positively correlated in warm‐origin snails, suggesting a need to maintain a minimum “warming tolerance” (difference in CTmax and habitat temperature) in warm environments. Our results highlight the importance of high mean temperature in shaping thermal performance curves.  相似文献   

15.
Tropical ectothermic species are currently depicted as more vulnerable to increasing temperatures because of the proximity between their upper thermal limits and environmental temperatures. Yet, the acclimatory capacity of thermal limits has rarely been measured in tropical species, even though they are generally predicted to be smaller than in temperate species. We compared critical thermal maximum (CTmax) and warming tolerance (WT: the difference between CTmax and maximum temperature, Tmax), as well as CTmax acclimatory capacity of toad species from the Atlantic forest (AF) and the Brazilian Caatinga (CAA), a semi-arid habitat with high temperatures. Acclimation temperatures represented the mean temperatures of AF and CAA habitats, making estimates of CTmax and WT more ecologically realistic. CAA species mean CTmax was higher compared to AF species in both acclimation treatments. Clutches within species, as well as between AF and CAA species, differed in CTmax plasticity and we discuss the potential biological meaning of these findings. We did not find a trade-off between absolute CTmax and CTmax plasticity, indicating that species can have both high CTmax and high CTmax plasticity. Although CTmax was highly correlated to Tmax, CTmax plasticity was not related to Tmax or Tmax coefficients of variation. CAA species mean WT was lower than for AF species, but still very high for all species, diverging from other studies with tropical species. This might be partially related to over-estimation of vulnerability due to under-appreciation of realistic acclimation treatments in CTmax estimation. Thus, some tropical species might not be as vulnerable to warming as previously predicted if CTmax is considered as a shifting population parameter.  相似文献   

16.
Predicting the biodiversity impacts of global warming implies that we know where and with what magnitude these impacts will be encountered. Amphibians are currently the most threatened vertebrates, mainly due to habitat loss and to emerging infectious diseases. Global warming may further exacerbate their decline in the near future, although the impact might vary geographically. We predicted that subtropical amphibians should be relatively susceptible to warming‐induced extinctions because their upper critical thermal limits (CTmax) might be only slightly higher than maximum pond temperatures (Tmax). We tested this prediction by measuring CTmax and Tmax for 47 larval amphibian species from two thermally distinct subtropical communities (the warm community of the Gran Chaco and the cool community of Atlantic Forest, northern Argentina), as well as from one European temperate community. Upper thermal tolerances of tadpoles were positively correlated (controlling for phylogeny) with maximum pond temperatures, although the slope was steeper in subtropical than in temperate species. CTmax values were lowest in temperate species and highest in the subtropical warm community, which paradoxically, had very low warming tolerance (CTmaxTmax) and therefore may be prone to future local extinction from acute thermal stress if rising pond Tmax soon exceeds their CTmax. Canopy‐protected subtropical cool species have larger warming tolerance and thus should be less impacted by peak temperatures. Temperate species are relatively secure to warming impacts, except for late breeders with low thermal tolerance, which may be exposed to physiological thermal stress in the coming years.  相似文献   

17.
Ecological forecasting on the likely impacts of climate warming is crucial at a time when several ecosystems seem to be responding to this environmental threat. Among the most important questions are: which are the most vulnerable organisms to climate warming and where are they? Recently, there has been debate on whether the tropics or temperate zones are more vulnerable to warming. Vulnerability toward higher temperatures will depend on the organisms’ thermal limits and also on their acclimation capacity, which remains largely unknown for most species. The aim of the present work was to estimate (1) the upper thermal limits (Critical Thermal Maximum (CTMax)), (2) the warming tolerance (CTMax – Maximum Habitat Temperature) and (3) the acclimation capacity of tropical and temperate rocky shore organisms. Differences in biological groups (decapod crustaceans vs fish) were investigated and the effect of region (tropical vs temperate) and habitat (intertidal vs subtidal) was tested. Overall, 35 species were tested. For the assessment of the acclimation capacity, tropical-temperate pairs of closely related species of shrimp, crab and fish were selected. Warming tolerance was higher for temperate species than for tropical species and higher for subtidal species than for intertidal species, confirming that species with the highest thermal limits have the lowest warming tolerance. All species tested presented some acclimation capacity (CTMaxTrial  CTMaxControl), with the exception of gobiid fish, which was not observed to acclimate. The tropical species tested showed a lower acclimation capacity than their temperate counterparts. Given that tropical rocky shore organisms are already living very close to their thermal limits and that their acclimation capacity is limited, it is likely that the impacts of global warming will be evident sooner in the tropics than in the temperate zone.  相似文献   

18.
The present study examines life stage‐related variation in the thermal limits to activity and survival in an African pest, the false codling moth Thaumatotibia leucotreta (Lepidoptera, Tortricidae). Thermal tolerance, including the functional activity limits of critical thermal maxima and minima (CTmax and CTmin respectively), upper and lower lethal temperature, and the effect of heat and cold hardening (short‐term acute plasticity), is measured across a diverse range of low or high temperature stress conditions in both larvae and adults. We also report the sum of inducible and cognate forms of the amounts of heat shock protein 70 (HSP70) as an explanatory variable for changes in thermotolerance. The results show that the larvae have high variability in CTmax and CTmin at different ramping rates and low levels of basal (innate) thermal tolerance. By contrast, the adults show high basal tolerance and overall lower variability in CTmax and CTmin, indicating lower levels of phenotypic plasticity in thermotolerance. HSP70 responses, although variable, do not reflect these tolerance or survival patterns. Larvae survive across a broader range of temperatures, whereas adults remain active across a broader range of temperatures. Life stage‐related variation in thermal tolerance is most pronounced under the slowest (most ecologically‐relevant) ramping rate (0.06 °C min–1) during lower critical thermal limit experiments and least pronounced during upper thermal limit experiments. Thus, the ramping rate can hinder or enhance the detection of stage‐related variation in thermal limits to activity and survival of insects.  相似文献   

19.
With global temperatures projected to surpass the limits of thermal tolerance for many species, evaluating the heritable variation underlying thermal tolerance is critical for understanding the potential for adaptation to climate change. We examined the evolutionary potential of thermal tolerance within a population of chinook salmon (Oncorhynchus tshawytscha) by conducting a full-factorial breeding design and measuring the thermal performance of cardiac function and the critical thermal maximum (CTmax) of offspring from each family. Additive genetic variation in offspring phenotype was mostly negligible, although these direct genetic effects explained 53% of the variation in resting heart rate (fH). Conversely, maternal effects had a significant influence on resting fH, scope for fH, cardiac arrhythmia temperature and CTmax. These maternal effects were associated with egg size, as indicated by strong relationships between the mean egg diameter of mothers and offspring thermal tolerance. Because egg size can be highly heritable in chinook salmon, our finding indicates that the maternal effects of egg size constitute an indirect genetic effect contributing to thermal tolerance. Such indirect genetic effects could accelerate evolutionary responses to the selection imposed by rising temperatures and could contribute to the population-specific thermal tolerance that has recently been uncovered among Pacific salmon populations.  相似文献   

20.
Cities are rapidly expanding, and global warming is intensified in urban environments due to the urban heat island effect. Therefore, urban animals may be particularly susceptible to warming associated with ongoing climate change. We used a comparative and manipulative approach to test three related hypotheses about the determinants of heat tolerance or critical thermal maximum (CTmax) in urban ants—specifically, that (a) body size, (b) hydration status, and (c) chosen microenvironments influence CTmax. We further tested a fourth hypothesis that native species are particularly physiologically vulnerable in urban environments. We manipulated water access and determined CTmax for 11 species common to cities in California's Central Valley that exhibit nearly 300‐fold variation in body size. There was a moderate phylogenetic signal influencing CTmax, and inter (but not intra) specific variation in body size influenced CTmax where larger species had higher CTmax. The sensitivity of ants’ CTmax to water availability exhibited species‐specific thresholds where short‐term water limitation (8 hr) reduced CTmax and body water content in some species while longer‐term water limitation (32 hr) was required to reduce these traits in other species. However, CTmax was not related to the temperatures chosen by ants during activity. Further, we found support for our fourth hypothesis because CTmax and estimates of thermal safety margin in native species were more sensitive to water availability relative to non‐native species. In sum, we provide evidence of links between heat tolerance and water availability, which will become critically important in an increasingly warm, dry, and urbanized world that others have shown may be selecting for smaller (not larger) body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号