首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Oncogenic transformation of normal cells often involves epigenetic alterations, including histone modification and DNA methylation. We conducted whole-genome bisulfite sequencing to determine the DNA methylomes of normal breast, fibroadenoma, invasive ductal carcinomas and MCF7. The emergence, disappearance, expansion and contraction of kilobase-sized hypomethylated regions (HMRs) and the hypomethylation of the megabase-sized partially methylated domains (PMDs) are the major forms of methylation changes observed in breast tumor samples. Hierarchical clustering of HMR revealed tumor-specific hypermethylated clusters and differential methylated enhancers specific to normal or breast cancer cell lines. Joint analysis of gene expression and DNA methylation data of normal breast and breast cancer cells identified differentially methylated and expressed genes associated with breast and/or ovarian cancers in cancer-specific HMR clusters. Furthermore, aberrant patterns of X-chromosome inactivation (XCI) was found in breast cancer cell lines as well as breast tumor samples in the TCGA BRCA (breast invasive carcinoma) dataset. They were characterized with differentially hypermethylated XIST promoter, reduced expression of XIST, and over-expression of hypomethylated X-linked genes. High expressions of these genes were significantly associated with lower survival rates in breast cancer patients. Comprehensive analysis of the normal and breast tumor methylomes suggests selective targeting of DNA methylation changes during breast cancer progression. The weak causal relationship between DNA methylation and gene expression observed in this study is evident of more complex role of DNA methylation in the regulation of gene expression in human epigenetics that deserves further investigation.  相似文献   

3.
DNA hypomethylation is an important epigenetic modification found to occur in many different cancer types, leading to the upregulation of previously silenced genes and loss of genomic stability. We previously demonstrated that hypoxia and hypoglycaemia (ischemia), two common micro-environmental changes in solid tumours, decrease DNA methylation through the downregulation of DNMTs in human colorectal cancer cells. Here, we utilized a genome-wide cross-platform approach to identify genes hypomethylated and upregulated by ischemia. Following exposure to hypoxia or hypoglycaemia, methylated DNA from human colorectal cancer cells (HCT116) was immunoprecipitated and analysed with an Affymetrix promoter array. Additionally, RNA was isolated and analysed in parallel with an Affymetrix expression array. Ingenuity pathway analysis software revealed that a significant proportion of the genes hypomethylated and upregulated were involved in cellular movement, including PLAUR and CYR61. A Matrigel invasion assay revealed that indeed HCT116 cells grown in hypoxic or hypoglycaemic conditions have increased mobility capabilities. Confirmation of upregulated expression of cellular movement genes was performed with qPCR. The correlation between ischemia and metastasis is well established in cancer progression, but the molecular mechanisms responsible for this common observation have not been clearly identified. Our novel data suggests that hypoxia and hypoglycaemia may be driving changes in DNA methylation through downregulation of DNMTs. This is the first report to our knowledge that provides an explanation for the increased metastatic potential seen in ischemic cells; i.e. that ischemia could be driving DNA hypomethylation and increasing expression of cellular movement genes.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.

Background

Ageing affects many components of the immune system, including innate immune cells like monocytes. They are important in the early response to pathogens and for their role to differentiate into macrophages and dendritic cells. Recent studies have revealed significant age-related changes in genomic DNA methylation in peripheral blood mononuclear cells, however information on epigenetic changes in specific leukocyte subsets is still lacking. Here, we aimed to analyse DNA methylation in purified monocyte populations from young and elderly individuals.

Findings

We analysed the methylation changes in monocytes purified from young and elderly individuals using the HumanMethylation450 BeadChip array. Interestingly, we found that among 26 differentially methylated CpG sites, the majority of sites were hypomethylated in elderly individuals. The most hypomethylated CpG sites were located in neuropilin 1 (NRP1; cg24892069) and neurexin 2 (NRXN2; cg27209729) genes, and upstream of miR-29b-2 gene (cg10501210). The age-related hypomethylation of these three sites was confirmed in a separate group of young and elderly individuals.

Conclusions

We identified significant age-related hypomethylation in human purified monocytes at CpG sites within the regions of NRP1, NRXN2 and miR-29b-2 genes.  相似文献   

12.
13.
Epigenetic changes in long interspersed nuclear element-1s (LINE-1s or L1s) occur early during the process of carcinogenesis. A lower methylation level (hypomethylation) of LINE-1 is common in most cancers, and the methylation level is further decreased in more advanced cancers. Consequently, several previous studies have suggested the use of LINE-1 hypomethylation levels in cancer screening, risk assessment, tumor staging, and prognostic prediction. Epigenomic changes are complex, and global hypomethylation influences LINE-1s in a generalized fashion. However, the methylation levels of some loci are dependent on their locations. The consequences of LINE-1 hypomethylation are genomic instability and alteration of gene expression. There are several mechanisms that promote both of these consequences in cis. Therefore, the methylation levels of different sets of LINE-1s may represent certain phenotypes. Furthermore, the methylation levels of specific sets of LINE-1s may indicate carcinogenesis-dependent hypomethylation. LINE-1 methylation pattern analysis can classify LINE-1s into one of three classes based on the number of methylated CpG dinucleotides. These classes include hypermethylation, partial methylation, and hypomethylation. The number of partial and hypermethylated loci, but not hypomethylated LINE-1s, is different among normal cell types. Consequently, the number of hypomethylated loci is a more promising marker than methylation level in the detection of cancer DNA. Further genome-wide studies to measure the methylation level of each LINE-1 locus may improve PCR-based methylation analysis to allow for a more specific and sensitive detection of cancer DNA or for an analysis of certain cancer phenotypes. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13148-011-0032-8) contains supplementary material, which is available to authorized users.  相似文献   

14.
N Benvenisty  M Szyf  D Mencher  A Razin  L Reshef 《Biochemistry》1985,24(19):5015-5019
Rat fetuses of 17-19-day gestation were injected in utero with 5-azacytidine (two to three daily injections of 40 micrograms/fetus). Neonates were injected with seven daily injections (1 mg/kg). DNA samples were isolated from the fetal and neonatal livers and neonatal spleen and subjected to analysis of their methylation status. Overall methylation was analyzed by the nearest-neighbor analysis (at CpG sites) and the pattern of methylation at CCGG sites by Southern blot analysis using phosphoenolpyruvate carboxykinase (PEPCK) sequences as probes. While DNAs from the liver and spleen undergo hypomethylation to the same extent in response to the 5-azacytidine treatment, the changes in the methylation patterns of the PEPCK gene in the two tissues are strikingly different. The changes observed indicate that a decrease in the methylase activity (inhibition by 5-azacytidine) results in site- and tissue-specific hypomethylation. The tissue-specific changes in the methylation pattern are associated with a tissue-specific expression of the PEPCK gene. Although the gene is hypomethylated by azacytidine in both liver and spleen, it is expressed only in the liver. The expression of already active genes (PEPCK in the kidney and albumin in the liver) is not further enhanced by the drug.  相似文献   

15.
Although BRAFV600E is well known to play an important role in the tumorigenesis of melanoma, its molecular mechanism, particularly the epigenetic aspect, has been incompletely understood. Here, we investigated the role of BRAFV600E signaling in altering gene methylation in the genome of melanoma cells using a methylated CpG island amplification/CpG island microarray system and searched for genes coupled to the BRAFV600E signaling through methylation aberrations. The results indicated that a wide range of genes with broad functions were linked to BRAFV600E signaling through their hyper- or hypomethylation. Expression of 59 genes hypermethylated upon BRAF knockdown was selectively tested and found to be largely correspondingly underexpressed, suggesting that these genes were naturally hypomethylated and overexpressed with BRAFV600E in melanoma. This BRAFV600E-promoted hypomethylation was confirmed on genes selectively examined in primary melanoma tumors. Some of these genes were functionally tested and demonstrated to play a role in melanoma cell proliferation and invasion. As a mechanism of aberrant gene methylation driven by BRAFV600E, expression of the DNA methyltransferase 1 and histone methyltransferase EZH2 was profoundly affected by BRAFV600E. We have thus uncovered a previously unrecognized prominent epigenetic mechanism in the tumorigenesis of melanoma driven by BRAFV600E. Many of the functionally important genes controlled by the BRAFV600E signaling through aberrant methylation may prove to be novel therapeutic targets for melanoma.Key words: BRAF mutation, DNA methylation, melanoma, MAP kinase pathway, gene hypomethylation, gene hypermethylation  相似文献   

16.
Epithelial ovarian cancer (EOC) is a highly lethal malignancy due to a lack of early detection approaches coupled with poor outcomes for patients with clinically advanced disease. Cancer-testis (CT) or cancer-germline genes encode antigens known to generate spontaneous anti-tumor immunity in cancer patients. CT45 genes are a recently discovered 6-member family of X-linked CT genes with oncogenic function. Here, we determined CT45 expression in EOC and fully defined its epigenetic regulation by DNA methylation. CT45 was silent and hypermethylated in normal control tissues, but a large subset of EOC samples showed increased CT45 expression in conjunction with promoter DNA hypomethylation. In contrast, copy number status did not correlate with CT45 expression in the TCGA database for EOC. CT45 promoter methylation inversely correlated with both CT45 mRNA and protein expression, the latter determined using IHC staining of an EOC TMA. CT45 expression was increased and CT45 promoter methylation was decreased in late-stage and high-grade EOC, and both measures were associated with poor survival. CT45 hypomethylation was directly associated with LINE-1 hypomethylation, and CT45 was frequently co-expressed with other CT antigen genes in EOC. Decitabine treatment induced CT45 mRNA and protein expression in EOC cells, and promoter transgene analyses indicated that DNA methylation directly represses CT45 promoter activity. These data verify CT45 expression and promoter hypomethylation as possible prognostic biomarkers, and suggest CT45 as an immunological or therapeutic target in EOC. Treatment with decitabine or other epigenetic modulators could provide a means for more effective immunological targeting of CT45.  相似文献   

17.
Cardiac development is a peculiar process involving coordinated cellular differentiation, migration, proliferation, and apoptosis. DNA methylation plays a key role in genomic stability, tissue-specific gene expression, cell proliferation, and apoptosis. Hypomethylation in the global genome has been reported in cardiovascular diseases. However, little is known about the impact and specific mechanism of global hypomethylation on cardiomyocytes. In the present study, we explored the impact of DNA methyltransferase inhibitors 5-azacytidine on cardiac development. In vivo experiment showed that hypomethylation of zebrafish embryos with 5-azacytidine exposure significantly reduced survival, induced malformations, and delayed general development process. Furthermore, zebrafish embryos injected with 5-azacytidine developed pericardial edema, ventricular volume reduction, looping deformity, and reduction in heart rate and ventricular shortening fraction. Cardiomyocytes treated with 5-azacytidine in vitro decreased proliferation and induced apoptosis in a concentration-dependent manner. Furthermore, 5-azacytidine treatment in cardiomyocytes resulted in 20 downregulated genes expression and two upregulated genes expression in 45 candidate genes, which indicated that DNA methylation functions as a bidirectional modulator in regulating gene expression. In conclusion, these results show the regulative effects of the epigenetic modifier 5-azacytidine in cardiac development of zebrafish embryos in vivo and cardiomyocyte proliferation and apoptosis and the homeostasis of gene expression in vitro, which offer a novel understanding of aberrant DNA methylation in the etiology of cardiovascular disease.  相似文献   

18.
Yao C  Li H  Shen X  He Z  He L  Guo Z 《PloS one》2012,7(1):e29686

Background

Hundreds of genes with differential DNA methylation of promoters have been identified for various cancers. However, the reproducibility of differential DNA methylation discoveries for cancer and the relationship between DNA methylation and aberrant gene expression have not been systematically analysed.

Methodology/Principal Findings

Using array data for seven types of cancers, we first evaluated the effects of experimental batches on differential DNA methylation detection. Second, we compared the directions of DNA methylation changes detected from different datasets for the same cancer. Third, we evaluated the concordance between methylation and gene expression changes. Finally, we compared DNA methylation changes in different cancers. For a given cancer, the directions of methylation and expression changes detected from different datasets, excluding potential batch effects, were highly consistent. In different cancers, DNA hypermethylation was highly inversely correlated with the down-regulation of gene expression, whereas hypomethylation was only weakly correlated with the up-regulation of genes. Finally, we found that genes commonly hypomethylated in different cancers primarily performed functions associated with chronic inflammation, such as ‘keratinization’, ‘chemotaxis’ and ‘immune response’.

Conclusions

Batch effects could greatly affect the discovery of DNA methylation biomarkers. For a particular cancer, both differential DNA methylation and gene expression can be reproducibly detected from different studies with no batch effects. While DNA hypermethylation is significantly linked to gene down-regulation, hypomethylation is only weakly correlated with gene up-regulation and is likely to be linked to chronic inflammation.  相似文献   

19.
Although, increased oxidative stress and hypomethylation of long interspersed nuclear element-1 (LINE-1) associate with bladder cancer (BCa) development, the relationship between these alterations is unknown. We evaluated the oxidative stress and hypomethylation of the LINE-1 in 61 BCa patients and 45 normal individuals. To measure the methylation levels and to differentiate the LINE-1 loci into hypermethylated, partially methylated and hypomethylated, peripheral blood cells, urinary exfoliated cells and cancerous tissues were evaluated by combined bisulfite restriction analysis PCR. The urinary total antioxidant status (TAS) and plasma protein carbonyl content were determined. The LINE-1 methylation levels and patterns, especially hypomethylated loci, in the blood and urine cells of the BCa patients were different from the levels and patterns in the healthy controls. The urinary TAS was decreased, whereas the plasma protein carbonyl content was increased in the BCa patients relative to the controls. A positive correlation between the methylation of LINE-1 in the blood-derived DNA and urinary TAS was found in both the BCa and control groups. The urinary hypomethylated LINE-1 loci and the plasma protein carbonyl content provided the best diagnostic potential for BCa prediction. Based on post-diagnostic samples, the combination test improved the diagnostic power to a sensitivity of 96% and a specificity of 96%. In conclusion, decreased LINE-1 methylation is associated with increased oxidative stress both in healthy and BCa subjects across the various tissue types, implying a dose-response association. Increases in the LINE-1 hypomethylation levels and the number of hypomethylated loci in both the blood- and urine-derived cells and increase in the oxidative stress were found in the BCa patients. The combination test of the urinary hypomethylated LINE-1 loci and the plasma protein carbonyl content may be useful for BCa screening and monitoring of treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号