首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coronavirus disease 2019 (COVID-19) pandemic has swept over the world in the past months, causing significant loss of life and consequences to human health. Although numerous drug and vaccine development efforts are underway, there are many outstanding questions on the mechanism of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral association to angiotensin-converting enzyme 2 (ACE2), its main host receptor, and host cell entry. Structural and biophysical studies indicate some degree of flexibility in the viral extracellular spike glycoprotein and at the receptor-binding domain (RBD)-receptor interface, suggesting a role in infection. Here, we perform explicitly solvated, all-atom, molecular dynamics simulations of the glycosylated, full-length, membrane-bound ACE2 receptor in both an apo and spike RBD-bound state to probe the intrinsic dynamics of the ACE2 receptor in the context of the cell surface. A large degree of fluctuation in the full-length structure is observed, indicating hinge bending motions at the linker region connecting the head to the transmembrane helix while still not disrupting the ACE2 homodimer or ACE2-RBD interfaces. This flexibility translates into an ensemble of ACE2 homodimer conformations that could sterically accommodate binding of the spike trimer to more than one ACE2 homodimer and suggests a mechanical contribution of the host receptor toward the large spike conformational changes required for cell fusion. This work presents further structural and functional insights into the role of ACE2 in viral infection that can potentially be exploited for the rational design of effective SARS-CoV-2 therapeutics.  相似文献   

2.
The recent outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has impacted the world severely. The binding of the SARS-CoV-2 virus to the angiotensin-converting enzyme 2 (ACE2) and its intake by the host cell is a necessary step for infection. ACE2 has garnered widespread therapeutic possibility as it is entry/interactive point for SARS-CoV-2, responsible for coronavirus disease 2019 (COVID-19) pandemic and providing a critical regulator for immune modulation in various disease. Patients with suffering from cancer always being on the verge of being immune compromised therefore gaining knowledge about how SARS-CoV-2 viruses affecting immune cells in human cancers will provides us new opportunities for preventing or treating virus-associated cancers. Despite COVID-19 pandemic got center stage at present time, however very little research being explores, which increase our knowledge in context with how SARS-CoV-2 infection affect cancer a cellular level. Therefore, in light of the ACE-2 as an important contributor of COVID-19 global, we analyzed correlation between ACE2 and tumor immune infiltration (TIL) level and the type markers of immune cells were investigated in breast cancer subtypes by using TIMER database. Our findings shed light on the immunomodulatory role of ACE2 in the luminal A subtype which may play crucial role in imparting therapeutic resistance in this cancer subtype.  相似文献   

3.
Peng  Haoran  Ding  Cuiling  Jiang  Liangliang  Tang  Wanda  Liu  Yan  Zhao  Lanjuan  Yi  Zhigang  Ren  Hao  Li  Chong  He  Yanhua  Zheng  Xu  Tang  Hailin  Chen  Zhihui  Qi  Zhongtian  Zhao  Ping 《中国科学:生命科学英文版》2022,65(6):1181-1197

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global crisis. Clinical candidates with high efficacy, ready availability, and that do not develop resistance are in urgent need. Despite that screening to repurpose clinically approved drugs has provided a variety of hits shown to be effective against SARS-CoV-2 infection in cell culture, there are few confirmed antiviral candidates in vivo. In this study, 94 compounds showing high antiviral activity against SARS-CoV-2 in Vero E6 cells were identified from 2,580 FDA-approved small-molecule drugs. Among them, 24 compounds with low cytotoxicity were selected, and of these, 17 compounds also effectively suppressed SARS-CoV-2 infection in HeLa cells transduced with human ACE2. Six compounds disturb multiple processes of the SARS-CoV-2 life cycle. Their prophylactic efficacies were determined in vivo using Syrian hamsters challenged with SARS-CoV-2 infection. Seven compounds reduced weight loss and promoted weight regain of hamsters infected not only with the original strain but also the D614G variant. Except for cisatracurium, six compounds reduced hamster pulmonary viral load, and IL-6 and TNF-α mRNA when assayed at 4 d postinfection. In particular, sertraline, salinomycin, and gilteritinib showed similar protective effects as remdesivir in vivo and did not induce antiviral drug resistance after 10 serial passages of SARS-CoV-2 in vitro, suggesting promising application for COVID-19 treatment.

  相似文献   

4.
In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wahan, China and it causes disease which is known as COVID-19. This infection spreads everywhere in the world, and it leads to an enormous number of death among individuals. The mystery issue about SARS-CoV-2 that appears not to have functions of a hemagglutinin and neuraminidase like other coronaviruses. Angiotensin-converting enzyme 2 (ACE2) is the main surface receptor for entering SARS-CoV-2 into the host cell. This entry process is mediated by binding the SARS-CoV-2 spike receptor-binding domain (RBD) to ACE2. Recently, researchers discover a new receptor responsible for the SARS-CoV-2 entry which is neuropilin-1 (NRP1). So, this work provides afford a knowledge of how the initial interaction between SARS-CoV-2 spike RBD and NRP1 b1 domain may occur. Understanding this interaction would be very necessary for drug design against SARS-CoV-2.  相似文献   

5.
Human angiotensin-converting enzyme 2 (ACE2) is the primary host cell receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binding and cell entry. Administration of high concentrations of soluble ACE2 can be utilized as a decoy to block the interaction of the virus with cellular ACE2 receptors and potentially be used as a strategy for treatment or prevention of coronavirus disease 2019. Human ACE2 is heavily glycosylated and its glycans impact on binding to the SARS-CoV-2 spike protein and virus infectivity. Here, we describe the production of a recombinant soluble ACE2-fragment crystallizable (Fc) variant in glycoengineered Nicotiana benthamiana. Our data reveal that the produced dimeric ACE2-Fc variant is glycosylated with mainly complex human-type N-glycans and functional with regard to enzyme activity, affinity to the SARS-CoV-2 receptor-binding domain, and wild-type virus neutralization.  相似文献   

6.
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as a public health crisis and led to tremendous economic devastation. The spike protein (S) of SARS-CoV-2 hijacks the angiotensin converting enzyme 2 (ACE2) as a receptor for virus entry, representing the initial step of viral infection. S is one of the major targets for development of the antiviral drugs, antibodies, and vaccines. ACE2 is a peptidase that plays a physiologically important role in the renin–angiotensin system. Concurrently, it also forms dimer of heterodimer with the neutral amino acid transporter B0AT1 to regulate intestinal amino acid metabolism. The symptoms of COVID-19 are closely correlated with the physiological functions of ACE2. In this review, we summarize the functional and structural studies on ACE2, B0AT1, and their complex with S of SARS-CoV-2, providing insights into the various symptoms caused by viral infection and the development of therapeutic strategies.  相似文献   

7.
Coronavirus disease-2019 (COVID-19) is a global pandemic with high infectivity and pathogenicity, accounting for tens of thousands of deaths worldwide. Recent studies have found that the pathogen of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), shares the same cell receptor angiotensin converting enzyme II (ACE2) as SARS-CoV. The pathological investigation of COVID-19 deaths showed that the lungs had characteristics of pulmonary fibrosis. However, how SARS-CoV-2 spreads from the lungs to other organs has not yet been determined. Here, we performed an unbiased evaluation of cell-type-specific expression of ACE2 in healthy and fibrotic lungs, as well as in normal and failed adult human hearts, using published single-cell RNA-seq data. We found that ACE2 expression in fibrotic lungs mainly locates in arterial vascular cells, which might provide a route for bloodstream spreading of SARS-CoV-2. Failed human hearts have a higher percentage of ACE2-expressing cardiomyocytes, and SARS-CoV-2 might attack cardiomyocytes through the bloodstream in patients with heart failure. Moreover, ACE2 was highly expressed in cells infected by respiratory syncytial virus or Middle East respiratory syndrome coronavirus and in mice treated by lipopolysaccharide. Our findings indicate that patients with pulmonary fibrosis, heart failure, and virus infection have a higher risk and are more susceptible to SARS-CoV-2 infection. The SARS-CoV-2 might attack other organs by getting into the bloodstream. This study provides new insights into SARS-CoV-2 blood entry and heart injury and might propose a therapeutic strategy to prevent patients from developing severe complications.  相似文献   

8.
Singh  Ashutosh  Singh  Rahul Soloman  Sarma  Phulen  Batra  Gitika  Joshi  Rupa  Kaur  Hardeep  Sharma  Amit Raj  Prakash  Ajay  Medhi  Bikash 《中国病毒学》2020,35(3):290-304
The recent outbreak of coronavirus disease(COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) has already affected a large population of the world. SARS-CoV-2 belongs to the same family of severe acute respiratory syndrome coronavirus(SARS-CoV) and Middle East respiratory syndrome coronavirus(MERSCoV). COVID-19 has a complex pathology involving severe acute respiratory infection, hyper-immune response, and coagulopathy. At present, there is no therapeutic drug or vaccine approved for the disease. There is an urgent need for an ideal animal model that can reflect clinical symptoms and underlying etiopathogenesis similar to COVID-19 patients which can be further used for evaluation of underlying mechanisms, potential vaccines, and therapeutic strategies. The current review provides a paramount insight into the available animal models of SARS-CoV-2, SARS-CoV, and MERS-CoV for the management of the diseases.  相似文献   

9.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Currently, as dangerous mutations emerge, there is an increased demand for specific treatments for SARS-CoV-2 infected patients. The spike glycoprotein on the virus envelope binds to the angiotensin converting enzyme 2 (ACE2) on host cells through its receptor binding domain (RBD) to mediate virus entry. Thus, blocking this interaction may inhibit viral entry and consequently stop infection. Here, we generated fusion proteins composed of the extracellular portions of ACE2 and RBD fused to the Fc portion of human IgG1 (ACE2-Ig and RBD-Ig, respectively). We demonstrate that ACE2-Ig is enzymatically active and that it can be recognized by the SARS-CoV-2 RBD, independently of its enzymatic activity. We further show that RBD-Ig efficiently inhibits in-vivo SARS-CoV-2 infection better than ACE2-Ig. Mechanistically, we show that anti-spike antibody generation, ACE2 enzymatic activity, and ACE2 surface expression were not affected by RBD-Ig. Finally, we show that RBD-Ig is more efficient than ACE2-Ig at neutralizing high virus titers. We thus propose that RBD-Ig physically blocks virus infection by binding to ACE2 and that RBD-Ig should be used for the treatment of SARS-CoV-2-infected patients.  相似文献   

10.
Coronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is broadly accepted that SARS-CoV-2 utilizes its spike protein to recognize the extracellular domain of angiotensin-converting enzyme 2 (ACE2) to enter cells for viral infection. However, other mechanisms of SARS-CoV-2 cell entry may occur. We show quantitatively that the SARS-CoV-2 spike protein also binds to the extracellular domain of broadly expressed integrin α5β1 with an affinity comparable to that of SARS-CoV-2 binding to ACE2. More importantly, we provide direct evidence that such binding promotes the internalization of SARS-CoV-2 into non-ACE2 cells in a manner critically dependent upon the activation of the integrin. Our data demonstrate an alternative pathway for the cell entry of SARS-CoV-2, suggesting that upon initial ACE2-mediated invasion of the virus in the respiratory system, which is known to trigger an immune response and secretion of cytokines to activate integrin, the integrin-mediated cell invasion of SARS-CoV-2 into the respiratory system and other organs becomes effective, thereby promoting further infection and progression of COVID-19.  相似文献   

11.
Recent biochemical, biophysical, and genetic studies have shown that heparan sulfate, a major component of the cellular glycocalyx, participates in infection of SARS-CoV-2 by facilitating the so-called open conformation of the spike protein, which is required for binding to ACE2. This review highlights the involvement of heparan sulfate in the SARS-CoV-2 infection cycle and argues that there is a high degree of coordination between host cell heparan sulfate and asparagine-linked glycans on the spike in enabling ACE2 binding and subsequent infection. The discovery that spike protein binding and infection depends on both viral and host glycans provides insights into the evolution, spread and potential therapies for SARS-CoV-2 and its variants.  相似文献   

12.
13.
Over the past 20 years, 3 highly pathogenic human coronaviruses (HCoVs) have emerged—Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and, most recently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)—demonstrating that coronaviruses (CoVs) pose a serious threat to human health and highlighting the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycles. Herein, we conducted 2 independent genome-wide CRISPR/Cas-9 knockout (KO) screens to identify MERS-CoV and HCoV-229E host dependency factors (HDFs) required for HCoV replication in the human Huh7 cell line. Top scoring genes were further validated and assessed in the context of MERS-CoV and HCoV-229E infection as well as SARS-CoV and SARS-CoV-2 infection. Strikingly, we found that several autophagy-related genes, including TMEM41B, MINAR1, and the immunophilin FKBP8, were common host factors required for pan-CoV replication. Importantly, inhibition of the immunophilin protein family with the compounds cyclosporine A, and the nonimmunosuppressive derivative alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures, which recapitulate the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrated that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.

This study identifies essential host dependency factors for human coronavirus replication, showing that these can be directly targeted by clinically approved inhibitors and that treatment leads to effective inhibition of coronavirus replication in primary human nasal epithelial cell cultures.  相似文献   

14.
SARS-CoV-2 has become a big challenge for the scientific community worldwide. SARS-CoV-2 enters into the host cell by the spike protein binding with an ACE2 receptor present on the host cell. Developing safe and effective inhibitor appears an urgent need to interrupt the binding of SARS-CoV-2 spike protein with ACE2 receptor in order to reduce the SARS-CoV-2 infection. We have examined the penta-peptide ATN-161 as potential inhibitor of ACE2 and SARS-CoV-2 spike protein binding, where ATN-161 has been commercially approved for the safety and possess high affinity and specificity towards the receptor binding domain (RBD) of S1 subunit in SARS-CoV-2 spike protein. We carried out experiments and confirmed these phenomena that the virus bindings were indeed minimized. ATN-161 peptide can be used as an inhibitor of protein-protein interaction (PPI) stands as a crucial interaction in biological systems. The molecular docking finding suggests that the binding energy of the ACE2-spike protein complex is reduced in the presence of ATN-161. Protein-protein docking binding energy (-40.50 kcal/mol) of the spike glycoprotein toward the human ACE2 and binding of ATN-161 at their binding interface reduced the biding energy (-26.25 kcal/mol). The finding of this study suggests that ATN-161 peptide can mask the RBD of the spike protein and be considered as a neutralizing candidate by binding with the ACE2 receptor. Peptide-based masking of spike S1 protein (RBD) and its neutralization is a highly promising strategy to prevent virus penetration into the host cell. Thus masking of the RBD leads to the loss of receptor recognition property which can reduce the chance of infection host cells.  相似文献   

15.
The outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus 2019 disease, has led to an ongoing global pandemic since 2019. Mass spectrometry can be used to understand the molecular mechanisms of viral infection by SARS-CoV-2, for example, by determining virus–host protein–protein interactions through which SARS-CoV-2 hijacks its human hosts during infection, and to study the role of post-translational modifications. We have reanalyzed public affinity purification–mass spectrometry data using open modification searching to investigate the presence of post-translational modifications in the context of the SARS-CoV-2 virus–host protein–protein interaction network. Based on an over twofold increase in identified spectra, our detected protein interactions show a high overlap with independent mass spectrometry-based SARS-CoV-2 studies and virus–host interactions for alternative viruses, as well as previously unknown protein interactions. In addition, we identified several novel modification sites on SARS-CoV-2 proteins that we investigated in relation to their interactions with host proteins. A detailed analysis of relevant modifications, including phosphorylation, ubiquitination, and S-nitrosylation, provides important hypotheses about the functional role of these modifications during viral infection by SARS-CoV-2.  相似文献   

16.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002–2003. Horseshoe bats (genus Rhinolophus) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related to SARS-CoV-2, has been identified in one horseshoe-bat species. Here we characterize the ability of the S-protein receptor-binding domains (RBDs) of SARS-CoV-1, SARS-CoV-2, pangolin coronavirus (PgCoV), RaTG13, and LyRa11, a bat virus similar to SARS-CoV-1, to bind a range of ACE2 orthologs. We observed that the PgCoV RBD bound human ACE2 at least as efficiently as the SARS-CoV-2 RBD, and that both RBDs bound pangolin ACE2 efficiently. We also observed a high level of variability in binding to closely related horseshoe-bat ACE2 orthologs consistent with the heterogeneity of their RBD-binding regions. However five consensus horseshoe-bat ACE2 residues enhanced ACE2 binding to the SARS-CoV-2 RBD and neutralization of SARS-CoV-2 pseudoviruses by an enzymatically inactive immunoadhesin form of human ACE2 (hACE2-NN-Fc). Two of these mutations impaired neutralization of SARS-CoV-1 pseudoviruses. An hACE2-NN-Fc variant bearing all five mutations neutralized both SARS-CoV-2 pseudovirus and infectious virus more efficiently than wild-type hACE2-NN-Fc. These data suggest that SARS-CoV-1 and -2 originate from distinct bat species, and identify a more potently neutralizing form of soluble ACE2.  相似文献   

17.
The continuous emergence of severe acute respiratory coronavirus 2 (SARS-CoV-2) variants and the increasing number of breakthrough infection cases among vaccinated people support the urgent need for research and development of antiviral drugs. Viral entry is an intriguing target for antiviral drug development. We found that diltiazem, a blocker of the L-type calcium channel Cav1.2 pore-forming subunit (Cav1.2 α1c) and an FDA-approved drug, inhibits the binding and internalization of SARS-CoV-2, and decreases SARS-CoV-2 infection in cells and mouse lung. Cav1.2 α1c interacts with SARS-CoV-2 spike protein and ACE2, and affects the attachment and internalization of SARS-CoV-2. Our finding suggests that diltiazem has potential as a drug against SARS-CoV-2 infection and that Cav1.2 α1c is a promising target for antiviral drug development for COVID-19.  相似文献   

18.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic that has infected over a hundred million people globally. There have been more than two million deaths recorded worldwide, with no end in sight until a widespread vaccination will be achieved. Current research has centred on different aspects of the virus interaction with cell surface receptors, but more needs to be done to further understand its mechanism of action in order to develop a targeted therapy and a method to control the spread of the virus. Lipids play a crucial role throughout the viral life cycle, and viruses are known to exploit lipid signalling and synthesis to affect host cell lipidome. Emerging studies using untargeted metabolomic and lipidomic approaches are providing new insight into the host response to COVID-19 infection. Indeed, metabolomic and lipidomic approaches have identified numerous circulating lipids that directly correlate to the severity of the disease, making lipid metabolism a potential therapeutic target. Circulating lipids play a key function in the pathogenesis of the virus and exert an inflammatory response. A better knowledge of lipid metabolism in the host-pathogen interaction will provide valuable insights into viral pathogenesis and to the development of novel therapeutic targets.  相似文献   

19.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.  相似文献   

20.
The coronavirus disease COVID-19 constitutes the most severe pandemic of the last decades having caused more than 1 million deaths worldwide. The SARS-CoV-2 virus recognizes the angiotensin converting enzyme 2 (ACE2) on the surface of human cells through its spike protein. It has been reported that the coronavirus can mildly infect cats, and ferrets, and perhaps dogs while not pigs, mice, chicken and ducks. Differences in viral infectivity among different species or individuals could be due to amino acid differences at key positions of the host proteins that interact with the virus, the immune response, expression levels of host proteins and translation efficiency of the viral proteins among other factors. Here, first we have addressed the importance that sequence variants of different animal species, human individuals and virus isolates have on the interaction between the RBD domain of the SARS-CoV-2 spike S protein and human angiotensin converting enzyme 2 (ACE2). Second, we have looked at viral translation efficiency by using the tRNA adaptation index. We find that integration of both interaction energy with ACE2 and translational efficiency explains animal infectivity. Humans are the top species in which SARS-CoV-2 is both efficiently translated as well as optimally interacting with ACE2. We have found some viral mutations that increase affinity for hACE and some hACE2 variants affecting ACE2 stability and virus binding. These variants suggest that different sensitivities to coronavirus infection in humans could arise in some cases from allelic variability affecting ACE2 stability and virus binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号