首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Habitat loss has pervasive and disruptive impacts on biodiversity in habitat remnants. The magnitude of the ecological impacts of habitat loss can be exacerbated by the spatial arrangement -- or fragmentation -- of remaining habitat. Fragmentation per se is a landscape-level phenomenon in which species that survive in habitat remnants are confronted with a modified environment of reduced area, increased isolation and novel ecological boundaries. The implications of this for individual organisms are many and varied, because species with differing life history strategies are differentially affected by habitat fragmentation. Here, we review the extensive literature on species responses to habitat fragmentation, and detail the numerous ways in which confounding factors have either masked the detection, or prevented the manifestation, of predicted fragmentation effects.Large numbers of empirical studies continue to document changes in species richness with decreasing habitat area, with positive, negative and no relationships regularly reported. The debate surrounding such widely contrasting results is beginning to be resolved by findings that the expected positive species-area relationship can be masked by matrix-derived spatial subsidies of resources to fragment-dwelling species and by the invasion of matrix-dwelling species into habitat edges. Significant advances have been made recently in our understanding of how species interactions are altered at habitat edges as a result of these changes. Interestingly, changes in biotic and abiotic parameters at edges also make ecological processes more variable than in habitat interiors. Individuals are more likely to encounter habitat edges in fragments with convoluted shapes, leading to increased turnover and variability in population size than in fragments that are compact in shape. Habitat isolation in both space and time disrupts species distribution patterns, with consequent effects on metapopulation dynamics and the genetic structure of fragment-dwelling populations. Again, the matrix habitat is a strong determinant of fragmentation effects within remnants because of its role in regulating dispersal and dispersal-related mortality, the provision of spatial subsidies and the potential mediation of edge-related microclimatic gradients.We show that confounding factors can mask many fragmentation effects. For instance, there are multiple ways in which species traits like trophic level, dispersal ability and degree of habitat specialisation influence species-level responses. The temporal scale of investigation may have a strong influence on the results of a study, with short-term crowding effects eventually giving way to long-term extinction debts. Moreover, many fragmentation effects like changes in genetic, morphological or behavioural traits of species require time to appear. By contrast, synergistic interactions of fragmentation with climate change, human-altered disturbance regimes, species interactions and other drivers of population decline may magnify the impacts of fragmentation. To conclude, we emphasise that anthropogenic fragmentation is a recent phenomenon in evolutionary time and suggest that the final, long-term impacts of habitat fragmentation may not yet have shown themselves.  相似文献   

2.
Modelling and predicting the potential habitat and future range expansion of invasive species can help managers to mitigate the impact of such species. Because habitat suitability and the colonization process are key determinants of range expansion, inferences drawn from invasion patterns should be based on both attributes. To predict the potential habitat and expansion rate of the invasive tree Bischofia javanica on Hahajima Island, we used simultaneous models of habitat and dispersal to estimate the effect of environment and dispersal from the source population on the current distribution. We compared the fit and the estimated magnitudes of the environment and dispersal effects in the simultaneous models with those in habitat suitability and colonization kernel models. The values of Akaike’s information criterion for the simultaneous models were better than those of the habitat suitability and colonization kernel models, indicating that the current distribution of Bischofia was determined by both environment and dispersal. The simultaneous models predicted that the potential habitat of Bischofia would be larger than that predicted by the habitat suitability model. The potential habitat distribution and future invasion predicted by the simultaneous models will contribute to the development of specific landscape-scale management plans to control this invasive species.  相似文献   

3.
Dispersal—the movement of an individual from the site of birth to a different site for reproduction—is an ecological and evolutionary driver of species ranges that shapes patterns of colonization, connectivity, gene flow, and adaptation. In plants, the traits that influence dispersal often vary within and among species, are heritable, and evolve in response to the fitness consequences of moving through heterogeneous landscapes. Spatial and temporal variation in the quality and quantity of habitat are important sources of selection on dispersal strategies across species ranges. While recent reviews have evaluated the interactions between spatial variation in habitat and dispersal dynamics, the extent to which geographic variation in temporal variability can also shape range-wide patterns in dispersal traits has not been synthesized. In this paper, we summarize key predictions from metapopulation models that evaluate how dispersal evolves in response to spatial and temporal habitat variability. Next, we compile empirical data that quantify temporal variability in plant demography and patterns of dispersal trait variation across species ranges to evaluate the hypothesis that higher temporal variability favors increased dispersal at plant range limits. We found some suggestive evidence supporting this hypothesis while more generally identifying a major gap in empirical work evaluating plant metapopulation dynamics across species ranges and geographic variation in dispersal traits. To address this gap, we propose several future research directions that would advance our understanding of the interplay between spatiotemporal variability and dispersal trait variation in shaping the dynamics of current and future species ranges.  相似文献   

4.
城市绿色空间格局的定量化方法研究进展   总被引:4,自引:0,他引:4  
陶宇  李锋  王如松  赵丹 《生态学报》2013,33(8):2330-2342
城市绿色空间格局的变化是影响城市生态系统社会、经济与生态功能的重要因素.在分析城市绿地数量和结构时空动态变化的基础上,重点综述了城市绿地斑块和廊道连接的景观格局指数法和网络分析方法,探讨了城市绿地与居住用地的空间交互作用以及可达性分析方法,比较了城市绿地沿城乡分布的梯度分析方法.并总结了城市绿色空间格局研究的热点领域,包括城市绿色空间格局的空间显式表征和多尺度分析,以及格局的定量研究与规划的结合,并应用于生态系统服务的评价.  相似文献   

5.
生态空间(林地、灌木、草地、水体)所产生的生态系统服务极大的改善了人类的生存环境,在城市绿地破碎化日益严重、绿地质量逐渐降低、乡土植物逐渐减少、入侵风险逐渐加剧等生态背景下,如何维持稳定而持续增长的城市生态系统服务供给,一直困扰着当下从事城市生态学领域研究的学者和城市管理者。植被群落作为城市绿地系统的基本组成单元,在绿地破碎化趋势下,可作为研究内容来探讨城市生态系统服务维持或提升策略;植被群落泛指城市中常见的、具有明显边界的、按照一定分布规则的植物群落单元,既包括道路绿地、居住区绿地、公园绿地等,也包括城市郊野自然林地。但对植被群落生态功能的研究也多停留在对某一生态问题的简单相关性研究,缺乏系统性和整体性。从微观层面的植被群落角度,整合相关文献研究,介绍了受植被群落特征影响的6种典型城市生态系统服务,综述了植被群落特征对这6种城市生态系统服务的影响机理,对植被群落特征因子进行总结、归类,从树种特性、垂直结构、水平结构、其他4个角度构建了"植被群落特征因子对城市生态系统服务影响关系表"。最后面向典型生态系统服务提升提出了城市低质量植被群落地区的营建和更新原则,以期为今后城市园林部门、规划部门制定城市绿地系统规划提供基础性技术支撑。  相似文献   

6.
基于MSPA与最小路径方法的巴中西部新城生态网络构建   总被引:11,自引:0,他引:11  
许峰  尹海伟  孔繁花  徐建刚 《生态学报》2015,35(19):6425-6434
目前快速城市化导致了生境斑块的日益破碎化,景观之间的连通性不断降低。构建生态网络可以连接破碎的生境斑块,增加绿地景观的连通性,对生物多样性保护具有重要意义。以高度景观破碎化的四川省巴中西部新城为研究区,采用形态学空间格局分析(MSPA)方法,提取出对研究区生态网络构建具有重要生态意义的核心区和桥接区两类景观要素,并选用整体连通性(IIC)、可能连通性(PC)和斑块重要性(d I)等景观指数,分别对核心区和桥接区进行景观连接度评价,遴选出对维持景观连通性贡献最大的10个核心区生境斑块作为生态网络的源地,并根据斑块对维持景观连通的重要性程度将其他核心区和桥接区进行类型划分,以此作为景观阻力的赋值依据,融入消费面模型中,最后采用最小路径方法构建了研究区潜在的生态网络,并基于重力模型对重要生态廊道进行了识别与提取,在此基础上有针对性地提出了生态网络优化的对策。研究结果表明,MSPA方法能够科学的辨识出研究区内对生态保护具有重要意义的结构性要素,例如作为物种栖息地的核心区和物种迁移通道的桥接区,这些要素是生态网络的重要组成部分;景观连通性的计算,明确了研究区景观要素的保护重点,为最小路径方法中的景观阻力赋值提供了重要的参考信息;基于MSPA与最小路径方法的生态网络分析框架综合了现有景观结构性要素识别、连通性分析以及物种潜在迁移路径分析等方法,将景观中潜在的生态源地和结构性廊道的连通性作为构建生态网络的重要基础和主要依据,从而使得生态网络的构建更科学。研究结果可为高度破碎化地区生态网络的构建提供重要的参考与依据,对其他地区生态网络的构建也具有一定的借鉴意义。  相似文献   

7.
Neutral community models have shown that limited migration can have a pervasive influence on the taxonomic composition of local communities even when all individuals are assumed of equivalent ecological fitness. Notably, the spatially implicit neutral theory yields a single parameter I for the immigration-drift equilibrium in a local community. In the case of plants, seed dispersal is considered as a defining moment of the immigration process and has attracted empirical and theoretical work. In this paper, we consider a version of the immigration parameter I depending on dispersal limitation from the neighbourhood of a community. Seed dispersal distance is alternatively modelled using a distribution that decreases quickly in the tails (thin-tailed Gaussian kernel) and another that enhances the chance of dispersal events over very long distances (heavily fat-tailed Cauchy kernel). Our analysis highlights two contrasting situations, where I is either mainly sensitive to community size (related to ecological drift) under the heavily fat-tailed kernel or mainly sensitive to dispersal distance under the thin-tailed kernel. We review dispersal distances of rainforest trees from field studies and assess the consistency between published estimates of I based on spatially-implicit models and the predictions of the kernel-based model in tropical forest plots. Most estimates of I were derived from large plots (10–50 ha) and were too large to be accounted for by a Cauchy kernel. Conversely, a fraction of the estimates based on multiple smaller plots (1 ha) appeared too small to be consistent with reported ranges of dispersal distances in tropical forests. Very large estimates may reflect within-plot habitat heterogeneity or estimation problems, while the smallest estimates likely imply other factors inhibiting migration beyond dispersal limitation. Our study underscores the need for interpreting I as an integrative index of migration limitation which, besides the limited seed dispersal, possibly includes habitat filtering or fragmentation.  相似文献   

8.
Global climate is changing rapidly and is accompanied by large‐scale fragmentation and destruction of habitats. Since dispersal is the first line of defense for mobile organisms to cope with such adversities in their environment, it is important to understand the causes and consequences of evolution of dispersal. Although dispersal is a complex phenomenon involving multiple dispersal‐components like propensity (tendency to leave the natal patch) and ability (to travel long distances), the relationship between these traits is not always straight‐forward, it is not clear whether these traits can evolve simultaneously or not, and how their interactions affect the overall dispersal profile. To investigate these issues, we subjected four large (n ~ 2400) outbred populations of Drosophila melanogaster to artificial selection for increased dispersal, in a setup that mimicked increasing habitat fragmentation over 33 generations. The propensity and ability of the selected populations were significantly greater than the non‐selected controls and the difference persisted even in the absence of proximate drivers for dispersal. The dispersal kernel evolved to have significantly greater standard deviation and reduced values of skew and kurtosis, which ultimately translated into the evolution of a greater frequency of long‐distance dispersers (LDDs). We also found that although sex‐biased dispersal exists in D. melanogaster, its expression can vary depending on which dispersal component is being measured and the environmental condition under which dispersal takes place. Interestingly though, there was no difference between the two sexes in terms of dispersal evolution. We discuss possible reasons for why some of our results do not agree with previous laboratory and field studies. The rapid evolution of multiple components of dispersal and the kernel, expressed even in the absence of stress, indicates that dispersal evolution cannot be ignored while investigating eco‐evolutionary phenomena like speed of range expansion, disease spread, evolution of invasive species and destabilization of metapopulation dynamics.  相似文献   

9.
Urban environmental segregation (UES) would differentiate between the environment of poor people and the environment of rich people. We apply selected indicators for the urban environment, especially indicators of urban patterns and of urban environmental quality. These indicators will illuminate the social distribution of environmental quality and the socio-spatial exposure toward urban flooding. The comprehensive approach for the UES assessment is first, to analyze if land-use dynamics expands into areas with high environmental impact, second, to explore where and how social segregation is expressed in the study area, and third, to analyze different indicators for the urban environment. Therefore the key parameters for urban dynamics and UES are the built-up area, degrees of imperviousness, green spaces (indicators of urban patterns), environmental exposure and mitigations measures (indicators of environmental quality). They are linked to the indices of social segregation, i.e. isolation and concentration. The presented approach offers a new dimension in research of social segregation by adding the above mentioned aspects of the urban environment and so gaining a new assessment of UES.In the case of Santiago de Chile, the complex urban landscape is leading to fragmented socio-spatial configurations. The urban problems of Santiago de Chile cannot be framed in a purely social or environmental context. On a large scale it is investigated, if socio-spatial distribution is balanced and whether residents of different social groups have different spatial furnishing of green spaces, different built-up densities, and different exposure to natural hazards.We conclude that land-use dynamics in Santiago produce a higher urban complexity and fragmentation. In the in-depth study area we prove intra-municipal UES in close proximity. Furthermore, social segregation is accompanied by unequal distribution of environmental features. One spatial indicator is the uneven distribution of urban green. As a consequence, environmental differences between different social strata are extremely contrasting.  相似文献   

10.
王沫  刘畅  李晓璐  高俊宏  李霞  董丽 《生态学报》2022,42(20):8254-8264
城市绿地为城市动植物提供了重要栖息地,对城市生物多样性保护具有重要意义。然而,传统社区公园绿地("传统绿地")主要围绕安全、景观和游憩功能,植物种类偏少,群落结构单一,为城市野生动物提供食源和栖息地的资源有限。北京市以2035规划"留白增绿"为政策背景,在中心城区建设一系列小型近自然社区公园绿地("近自然绿地"),在植物物种组成、群落结构和管理方式上有别于以往的传统绿地。一般认为生物多样性在一定范围内随面积的增大而提高,那么对于受到高度干扰的小型绿地,"近自然"特征是否能够显著提高其包括昆虫、鸟类在内的生物多样性?为探究这类近自然绿地的生物多样性特征,在2020年8月至2021年3月,综合采用样方法、样线法,对北京市西城区2个近自然绿地及4个传统绿地的植物、昆虫和鸟类进行调查,分析比较其多样性特征。结果表明,近自然绿地的灌木和草本层丰富度和多样性显著高于传统绿地,均匀度则无显著差异;近自然绿地的昆虫和鸟类的丰富度、多样性显著高于传统绿地,均匀度则无显著差异。与传统绿地相比,近自然绿地具有更丰富的鸟类食源、蜜源植物,以及更为复杂的植被垂直结构。根据以上结果,近自然绿地具有比传统绿地更为显著的生物多样性优势,建议在进行城市绿地建设时,应增加植被结构复杂的近自然绿地的比例,增加绿地的灌木和草本层多样性。研究成果不仅丰富了小面积绿地的生物多样性内涵,且可为大都市近自然绿地营建提供理论依据。本研究还将为今后公园设计、改造和管理提供新的思路,引导绿地向基于生物多样性保护的方向可持续发展。  相似文献   

11.
Urban green spaces are often subject to intensive management and therefore only provide habitat for very few plant and animal species. Many studies have already proven that less intensive management of near-natural grassland habitats can increase species diversity, for example of butterflies. However, there is still a lack of knowledge as to what extent less intensive management of urban green spaces can promote urban butterfly diversity. Therefore, we examined parameters that determine the number of butterfly species in less maintained or even abandoned urban green spaces. We expected butterfly species richness and observation numbers to be affected by different management regimes. Butterfly surveys were carried out on 56 sites in the city of Hannover, Germany, in three consecutive years. The sites were subject to different management regimes. We explored parameters such as area size, the diversity of nectar plant species and habitat diversity for each site. A total of 34 species were recorded, with a minimum of 0 and a maximum of 17 species per site and year. The extreme drought and heat in 2018 clearly influenced the results of our study and this was reflected in massive decreases of observation numbers for some species. Less intensive management showed preferable effects in comparison to intensive management, but area size and nectar plants were more important factors influencing butterfly species richness and number of observations. Our results suggest that site parameters such as area size, nectar plant species richness or number of habitat types had stronger influences on butterflies than variations of extensive management. We conclude that less intensive urban green space management for good butterfly habitats is not a question of grazing, mowing or temporary abandonment, but instead must aim to increase nectar plant and habitat diversity.  相似文献   

12.
城市林木树冠覆盖研究进展   总被引:5,自引:1,他引:4  
随着城市化进程的加快以及人们对由此产生的大量环境问题认识的不断加深,城市森林受到了越来越多的关注,它被越来越多的普通市民和科学家看做是有效解决城市环境与生态问题的最根本途径.在城市森林的维护、规划与建设过程中,城市林木树冠覆盖被认为是城市森林最重要的结构与功能衡量指标.针对我国城市森林研究与实践起步较晚的现实需求,从城市林木树冠覆盖的概念、分类与评价、城市林木树冠覆盖与城市森林服务功能、城市林木树冠覆盖的研究方法和城市林木树冠覆盖率与城市森林规划等4个方面,对国内外城市林木树冠覆盖研究的现状进行了评述.指出了该方面研究的未来趋势包括4个方面,首先,城市林木树冠覆盖研究,已经与城市的生态建设和日常生态、生产管理紧密结合.其次,高分辨率(米级以下)卫星影像在城市森林树冠调查与制图过程中的应用越来越普遍.第三,像面向对象的影像解译方法与激光雷达(LIDAR)等新技术将会得到更广泛的使用.第四,为了最终实现城市森林建设规划能够落地的目标,在城市森林建设的规划实施决策过程中,计算机辅助人工智能的应用将会普及.  相似文献   

13.
1. In times of ongoing habitat fragmentation, the persistence of many species is determined by their dispersal abilities. Consequently, understanding the rules underlying movement between habitat patches is a key issue in conservation ecology. 2. We have analysed mark-release-recapture (MRR) data on inter-patches movements of the Dusky Large Blue butterfly Maculinea nausithous in a fragmented landscape in northern Bavaria, Germany. The aim of the analysis was to quantify distance dependence of dispersal as well as to evaluate the effect of target patch area on immigration probability. For statistical evaluation, we apply a 'reduced version' of the virtual migration model (VM), only fitting parameters for dispersal distance and immigration. In contrast to other analyses, we fit a mixed dispersal kernel to the MRR data. 3. A large fraction of recaptures happened in other habitat patches than those where individuals were initially caught. Further, we found significant evidence for the presence of a mixed dispersal kernel. The results indicate that individuals follow different strategies in their movements. Most movements are performed over small distances, nonetheless involving travelling between nearby habitat patches (median distance c. 480 m). A small fraction (c. 0·025) of the population has a tendency to move over larger distances (median distance c. 3800 m). Further, immigration was positively affected by patch area (I~A(ζ) ), with the scaling parameter ζ = 0·5. 4. Our findings should help to resolve the long-lasting dispute over the suitability of the negative exponential function vs. inverse-power one for modelling dispersal. Previous studies on various organisms found that the former typically gives better overall fit to empirical distance distributions, but that the latter better represents long-distance movement probabilities. As long-distance movements are more important for landscape-level effects and thus, e.g. for conservation-oriented analyses like PVAs, fitting inverse-power kernels has often been preferred. 5. We conclude that the above discrepancy may simply stem from the fact that recorded inter-patch movements are an outcome of two different processes: daily routine movements and genuine dispersal. Consequently, applying mixed dispersal kernels to disentangle the two processes is recommended.  相似文献   

14.
Species may survive under contemporary climate change by either shifting their range or adapting locally to the warmer conditions. Theoretical and empirical studies recently underlined that dispersal, the central mechanism behind these responses, may depend on the match between an individuals’ phenotype and local environment. Such matching habitat choice is expected to induce an adaptive gene flow, but it now remains to be studied whether this local process could promote species’ responses to climate change. Here, we investigate this by developing an individual‐based model including either random dispersal or temperature‐dependent matching habitat choice. We monitored population composition and distribution through space and time under climate change. Relative to random dispersal, matching habitat choice induced an adaptive gene flow that lessened spatial range loss during climate warming by improving populations’ viability within the range (i.e. limiting range fragmentation) and by facilitating colonization of new habitats at the cold margin. The model even predicted range contraction under random dispersal but range expansion under optimal matching habitat choice. These benefits of matching habitat choice for population persistence mostly resulted from adaptive immigration decision and were greater for populations with larger dispersal distance and higher emigration probability. We also found that environmental stochasticity resulted in suboptimal matching habitat choice, decreasing the benefits of this dispersal mode under climate change. However population persistence was still better under suboptimal matching habitat choice than under random dispersal. Our results highlight the urgent need to implement more realistic mechanisms of dispersal such as matching habitat choice into models predicting the impacts of ongoing climate change on biodiversity.  相似文献   

15.
Urban densification is often considered has a green planning policy. However, its effects on woodland arthropods have been rarely analysed. To fill this gap, a multi-taxa approach using three ground-dwelling arthropod assemblages was conducted on 11 woodlands located along an urbanisation gradient. The gradient range from rural areas to one of the most urbanized cities in the world: Paris (France). Spiders, ground beetles and rove beetles were sampled with pitfall traps. We addressed the two following questions: (i) do the responses to urbanisation differ between taxa and/or between trait groups (habitat affinity to woodlands and dispersal capability) along the gradient? (ii) do the richness and abundance show a linear or an intermediate response? Our results showed a replacement of forest and non-flying species by generalist species and flying species with an increasing level of urbanisation. In term of species richness and abundance, the response varied between taxonomical and also trait groups. Some groups showed a strong linear decrease like forest carabids but other groups like spiders showed maximum values at intermediate levels of urbanisation. However, after a threshold of 70 % of built-in area, urbanisation negatively affected the species richness of all taxa and almost all trait groups, with a stronger effect on forest species. We suggest that the urban densification strongly impacted the assemblages of ground-dwelling arthropods by modifying both landscape and local properties of woodlands. To be considered as a green planning policy, the deleterious effects of urban densification should be mitigated.  相似文献   

16.
1. Informative Bayesian priors can improve the precision of estimates in ecological studies or estimate parameters for which little or no information is available. While Bayesian analyses are becoming more popular in ecology, the use of strongly informative priors remains rare, perhaps because examples of informative priors are not readily available in the published literature. 2. Dispersal distance is an important ecological parameter, but is difficult to measure and estimates are scarce. General models that provide informative prior estimates of dispersal distances will therefore be valuable. 3. Using a world-wide data set on birds, we develop a predictive model of median natal dispersal distance that includes body mass, wingspan, sex and feeding guild. This model predicts median dispersal distance well when using the fitted data and an independent test data set, explaining up to 53% of the variation. 4. Using this model, we predict a priori estimates of median dispersal distance for 57 woodland-dependent bird species in northern Victoria, Australia. These estimates are then used to investigate the relationship between dispersal ability and vulnerability to landscape-scale changes in habitat cover and fragmentation. 5. We find evidence that woodland bird species with poor predicted dispersal ability are more vulnerable to habitat fragmentation than those species with longer predicted dispersal distances, thus improving the understanding of this important phenomenon. 6. The value of constructing informative priors from existing information is also demonstrated. When used as informative priors for four example species, predicted dispersal distances reduced the 95% credible intervals of posterior estimates of dispersal distance by 8-19%. Further, should we have wished to collect information on avian dispersal distances and relate it to species' responses to habitat loss and fragmentation, data from 221 individuals across 57 species would have been required to obtain estimates with the same precision as those provided by the general model.  相似文献   

17.
Habitat loss is known to pervade extinction thresholds in metapopulations. Such thresholds result from a loss of stability that can eventually lead to collapse. Several models have been developed to understand the nature of these transitions and how they are affected by the locality of interactions, fluctuations or external drivers. Most models consider the impact of grazing or aridity as a control parameter that can trigger sudden shifts, once critical values are reached. Others explore instead the role played by habitat loss and fragmentation. Here we consider a minimal model incorporating facilitation between the individuals of the same species along with habitat destruction, with the aim of understanding how local cooperation and habitat loss interact with each other. A mathematical model incorporating facilitation and habitat destruction is derived, along with a spatially explicit simulation model. It is found that a catastrophic shift is expected for increasing levels of habitat loss, but the bifurcation becomes continuous when dispersal is local. Under these conditions, spatial patchiness is found and the qualitative change from discontinuous to continuous results are in agreement with previous studies on ecological systems. Our results suggest that species exhibiting facilitation and displaying short-range dispersal will be markedly more capable of avoiding catastrophic tipping points.  相似文献   

18.
Habitat loss can alter animal movements and disrupt animal seed dispersal mutualisms; however, its effects on spatial patterns of seed dispersal are not well understood. To explore the effects of habitat loss on seed dispersal distances and seed dispersion (aggregation), we created a spatially explicit, individual‐based model of an animal dispersing seeds (SEADS—Spatially Explicit Animal Dispersal of Seeds) in a theoretical landscape of 0%–90% habitat loss based on three animal traits: movement distance, gut retention time, and time between movements. Our model design had three objectives: to determine the effects of (1) animal traits and (2) habitat loss on seed dispersal distances and dispersion and (3) determine how animal traits could mitigate the negative effects of habitat loss on these variables. SEADS results revealed a complex interaction involving all animal traits and habitat loss on dispersal distances and dispersion, driven by a novel underlying mechanism of fragment entrapment. Unexpectedly, intermediate habitat loss could increase dispersal distances and dispersion relative to low and high habitat loss for some combinations of animal traits. At intermediate habitat loss, movement between patches was common, and increased dispersal distances and dispersion compared to continuous habitats because animals did not stop in spaces between fragments. However, movement between patches was reduced at higher habitat loss as animals became trapped in fragments, often near the parent plant, and dispersed seeds in aggregated patterns. As movement distance increased, low time between movements and high gut retention time combinations permitted more movement to adjacent patches than other combinations of animal traits. Because habitat loss affects movement in a nonlinear fashion under some conditions, future empirical tests would benefit from comparisons across landscapes with more than two levels of fragmentation.  相似文献   

19.
Species may be driven extinct by climate change, unless their populations are able to shift fast enough to track regions of suitable climate. Shifting will be faster as the proportion of suitable habitat in the landscape increases. However, it is not known how the spatial arrangement of habitat will affect the speed of range advance, especially when habitat is scarce, as is the case for many specialist species. We develop methods for calculating the speed of advance that are appropriate for highly fragmented, stochastic systems. We reveal that spatial aggregation of habitat tends to reduce the speed of advance throughout a wide range of species parameters: different dispersal distances and dispersal kernel shapes, and high and low extinction probabilities. In contrast, aggregation increases the steady-state proportion of habitat that is occupied (without climate change). Nonetheless, we find that it is possible to achieve both rapid advance and relatively high patch occupancy when the habitat has a “channeled” pattern, resembling corridors or chains of stepping stones. We adapt techniques from electrical circuit theory to predict the rate of advance efficiently for complex, realistic landscape patterns, whereas the rate cannot be predicted by any simple statistic of aggregation or fragmentation. Conservationists are already advocating corridors and stepping stones as important conservation tools under climate change, but they are vaguely defined and have so far lacked a convincing basis in fundamental population biology. Our work shows how to discriminate properties of a landscape''s spatial pattern that affect the speed of colonization (including, but not limited to, patterns like corridors and chains of stepping stones), and properties that affect a species'' probability of persistence once established. We can therefore point the way to better land use planning approaches, which will provide functional habitat linkages and also maintain local population viability.  相似文献   

20.
Bowie RC 《Molecular ecology》2011,20(9):1799-1802
It is often assumed that species which exhibit a greater propensity for dispersal are less susceptible to the impacts of habitat fragmentation; however, a growing body of literature suggests that such generalizations should be carefully evaluated as not all species appear to be equally sensitive to fragmentation. In this issue of Molecular Ecology, Callens et al. (2011) take an innovative approach to compare contemporary estimates of dispersal from an extensive mark-recapture and patch occupancy data set with historical estimates derived from multilocus population genetic models for seven sympatric forest-dependent species in the Taita Hills, Africa. As has been observed for forest-dependent species from the Amazon, populations of sedentary species were more strongly differentiated and clustered when compared to those of more dispersive taxa. The most intriguing result recovered though, was that the five species with similar historical estimates of gene flow (dispersal) differed substantially in their contemporary dispersal rates, suggesting that for some species the propensity for dispersal has decreased over time. As a consequence, the authors suggest that post-fragmentation estimates of dispersal on their own may not be the best predictors of how habitat fragmentation could affect forest-dependent animal communities.This work significantly advances our understanding of the dynamics of habitat fragmentation and makes a strong case for the need to integrate data on historical processes with contemporary data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号