首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Endoplasmic reticulum (ER) stress can initiate autophagy via unfolded protein response (UPR). As a key downstream gene of UPR, DDIT3/CHOP is expressed in chondrocytes. However, the regulation mechanism of DDIT3/CHOP on autophagy in chondrocytes remains unclear. In this study, the expression levels of autophagic markers Beclin1 and LC3B were found to decrease while p62 increase in the tibial growth plate and costal primary chondrocytes from DDIT3/CHOP KO mice. In vitro, overexpressing DDIT3/CHOP induced autophagy in ATDC5 chondrocytes, displaying an elevated immunofluorescence signal of LC3B and elevated numbers of autophagosomes and autolysosomes. Analysis of the gain- and loss-of-function indicated that the protein level of Beclin1 and the ratio of LC3BII/I increased in DDIT3/CHOP overexpression cells, whereas decreased in DDIT3/CHOP knockdown cells. The decreased level of p62 and additional accumulation of LC3BII caused by chloroquine (CQ) further indicated that DDIT3/CHOP enhanced autophagic flux. Mechanistically, we found that DDIT3/CHOP binds directly to the promoter of SIRT1 to promote its expression by CHIP, qRT-PCR, and Western blot analysis. In addition, SIRT1 enhanced autophagic activity in ATDC5 cells, and inhibition or activation of SIRT1 partially reversed the effect of overexpressing or downregulating DDIT3/CHOP on autophagy. Furthermore, AKT signaling was found to be responsible for DDIT3/CHOP-regulated autophagy in ATDC5 cells. SIRT1 knockdown reversed the effect of DDIT3/CHOP overexpression on AKT signaling. In conclusion, our data clarifies that DDIT3/CHOP promotes autophagy in ATDC5 chondrocytes through the SIRT1-AKT pathway. These results were also confirmed in the primary chondrocytes.  相似文献   

5.
双组分核定位信号介导Apoptin定位于肿瘤细胞核   总被引:2,自引:0,他引:2  
Apoptin是一种来源于鸡贫血病毒的小蛋白,在肿瘤细胞中定位于细胞核,而在正常细胞中主要分布于细胞质。根据预测,Apoptin分子中有2段序列(NLS1和NLS2)可能是单组分核定位信号。通过基因突变和缺失构建了Apoptin各种不同的核定位信号突变体和磷酸化突变体,利用增强型绿色荧光蛋白(EGFP)作标签,观察了其在肿瘤细胞中亚细胞定位的变化。结果表明,NLS1和NLS2单独均不是有效的单组分核定位信号。Apoptin的核定位信号是由NLS1和NLS2这2段序列共同组成的双组分核定位信号,缺少任何一段序列都会严重影响Apoptin在肿瘤细胞中的核定位。其中,NLS2对于Apoptin的核定位起主要作用。Apoptin的获得型磷酸化突变体并不能转位到正常细胞的细胞核中,而其磷酸化负突变体仍定位于肿瘤细胞的细胞核。另外,丝氨酸/苏氨酸蛋白激酶抑制剂H7也不影响Apoptin在肿瘤细胞中的核定位。很可能,Apoptin的磷酸化并不参与调控其核定位信号的功能。  相似文献   

6.
7.
8.
Orphan receptor Nurr1 participates in the acquisition and maintenance of the dopaminergic cell phenotype, modulation of inflammation, and cytoprotection, but little is known about its regulation. In this study, we report that Nurr1 contains a bipartite nuclear localization signal (NLS) within its DNA binding domain and two leucine-rich nuclear export signals (NES) in its ligand binding domain. Together, these signals regulate Nurr1 shuttling in and out of the nucleus. Immunofluorescence and immunoblot analysis revealed that Nurr1 is mostly nuclear. A Nurr1 mutant lacking the NLS failed to enter the nucleus. The Nurr1 NLS sequence, when fused to green fluorescent protein, led to nuclear accumulation of this chimeric protein, indicating that this sequence was sufficient to direct nuclear localization of Nurr1. Furthermore, two NES were characterized in the ligand binding domain, whose deletion caused Nurr1 to accumulate predominantly in the nucleus. The Nurr1 NES was sensitive to CRM1 and could function as an independent export signal when fused to green fluorescent protein. Sodium arsenite, an agent that induces oxidative stress, promoted nuclear export of ectopically expressed Nurr1 in HEK293T cells, and the antioxidant N-acetylcysteine rescued from this effect. Similarly, in dopaminergic MN9D cells, arsenite induced the export of endogenous Nurr1, resulting in the loss of expression of Nurr1-dependent genes. This study illustrates that Nurr1 shuttling between the cytosol and nucleus is controlled by specific nuclear import and export signals and that oxidative stress can unbalance the distribution of Nurr1 to favor its cytosolic accumulation.  相似文献   

9.
10.
Abnormal p53 cellular localization has been considered to be one of the mechanisms that could inactivate p53 function. To understand the regulation of p53 cellular trafficking, we have previously identified two p53 domains involved in its localization. A basic domain, Lys(305)-Arg(306), is required for p53 nuclear import, and a carboxyl-terminal domain, namely the cytoplasmic sequestration domain (CSD) from residues 326-355, could block the nuclear import of Lys(305) or Arg(306) mutated p53. To characterize further the function of these two domains, we demonstrate in this report that the previously described major nuclear localization signal works together with Lys(305)-Arg(306) to form a bipartite and functional nuclear localization sequence (NLS) for p53 nuclear import. The CSD could block the binding of p53 to the NLS receptor, importin alpha, and reduce the efficiency of p53 nuclear import in MCF-7, H1299, and Saos-2 cells. The blocking effect of the CSD is not due to the enhancement of nuclear export or oligomerization of the p53. These results indicate that the CSD can regulate p53 nuclear import by controlling access of the NLS to importin alpha binding.  相似文献   

11.
12.
K Engel  A Kotlyarov    M Gaestel 《The EMBO journal》1998,17(12):3363-3371
To study the intracellular localization of MAPKAP kinase 2 (MK2), which carries a putative bipartite nuclear localization signal (NLS), we constructed a green fluorescent protein-MAPKAP kinase 2 fusion protein (GFP-MK2). In transfected cells, this protein is located predominantly in the nucleus; unexpectedly, upon stress, it rapidly translocates to the cytoplasm. This translocation can be blocked by the p38 MAP kinase inhibitor SB203580, indicating its regulation by phosphorylation. Molecular mimicry of MK2 phosphorylation at T317 in GFP-MK2 led to a mutant which is located almost exclusively in the cytoplasm of the cell, whereas the mutant T317A shows no stress-induced redistribution. Since leptomycin B, which inhibits the interaction of exportin 1 with the Rev-type leucine-rich nuclear export signal (NES), blocks stress-dependent translocation of GFP-MK2, it is supposed that phosphorylation-induced export of the protein causes the translocation. We have identified the region responsible for nuclear export in MK2 which is partially overlapping with and C-terminal to the autoinhibitory motif. This region contains a cluster of hydrophobic amino acids in the characteristic spacing of a leucine-rich Rev-type NES which is necessary to direct GFP-MK2 to the cytoplasm. However, unlike the Rev-type NES, this region alone is not sufficient for nuclear export. The data obtained indicate that MK2 contains a constitutively active NLS and a stress-regulated signal for nuclear export. Keywords: nuclear export/nuclear import/protein phosphorylation/signal transduction/stress response  相似文献   

13.
Polo-like kinase 1 (Plk1), a mammalian ortholog of Drosophila Polo, is a serine-threonine protein kinase implicated in the regulation of multiple aspects of mitosis. The protein level, activity, and localization of Plk1 change during the cell cycle, and its proper subcellular localization is thought to be crucial for its function. Although localization of Plk1 to the centrosome has been established, nuclear localization or nucleocytoplasmic translocation of Plk1 has not been fully addressed. Here we show that Plk1 accumulates in both the nucleus and the cytoplasm in addition to its localization to the centrosome during S and G(2) phases. Our results identify a conserved region in the kinase domain of Plk1 (residues 134-146) as a functional bipartite nuclear localization signal (NLS) sequence that regulates nuclear translocation of Plk1. The identified NLS is necessary and sufficient for directing nuclear localization of Plk1. This bipartite NLS has an unusually short spacer sequence between two clusters of basic amino acids but is sensitive to RanQ69L, a dominant negative form of Ran, similar to ordinary bipartite NLS. Remarkably, the expression of an NLS-disrupted mutant of Plk1 during S phase was found to arrest the cells in G(2) phase. These results suggest that the bipartite NLS-dependent nuclear localization of Plk1 before mitosis is important for ensuring normal cell cycle progression.  相似文献   

14.
We have characterized the interaction and nuclear localization of the nucleocapsid (N) protein and phosphoprotein (P) of sonchus yellow net nucleorhabdovirus. Expression studies with plant and yeast cells revealed that both N and P are capable of independent nuclear import. Site-specific mutagenesis and deletion analyses demonstrated that N contains a carboxy-terminal bipartite nuclear localization signal (NLS) located between amino acids 465 and 481 and that P contains a karyophillic region between amino acids 40 and 124. The N NLS was fully capable of functioning outside of the context of the N protein and was able to direct the nuclear import of a synthetic protein fusion consisting of green fluorescent protein fused to glutathione S-transferase (GST). Expression and mapping studies suggested that the karyophillic domain in P is located within the N-binding domain. Coexpression of N and P drastically affected their localization patterns relative to those of individually expressed proteins and resulted in a shift of both proteins to a subnuclear region. Yeast two-hybrid and GST pulldown experiments verified the N-P and P-P interactions, and deletion analyses have identified the N and P interacting domains. N NLS mutants were not transported to the nucleus by import-competent P, presumably because N binding masks the P NLS. Taken together, our results support a model for independent entry of N and P into the nucleus followed by associations that mediate subnuclear localization.  相似文献   

15.
16.
Classical protein import, mediated by the binding of a classical nuclear localization signal (NLS) to the NLS receptor, karyopherin/importin alpha, is the most well studied nuclear transport process. Classical NLSs are either monopartite sequences that contain a single cluster of basic amino acids (Lys/Arg) or bipartite sequences that contain two clusters of basic residues separated by an unconserved linker region. We have created mutations in conserved residues in each of the three NLS-binding sites/regions in Saccharomyces cerevisiae karyopherin alpha (SRP1). For each mutant we have analyzed binding to both a monopartite and a bipartite NLS cargo in vitro. We have also expressed each karyopherin alpha mutant in vivo as the only cellular copy of the NLS receptor and examined the impact on cell growth and import of both monopartite and bipartite NLS-containing cargoes. Our results reveal the functional significance of specific residues within karyopherin alpha for NLS cargo binding. A karyopherin alpha variant with a mutation in the major NLS-binding site exhibits decreased binding to both monopartite and bipartite NLS cargoes, and this protein is not functional in vivo. However, we also find that a karyopherin alpha variant with a mutation in the minor NLS-binding site, which shows decreased binding only to bipartite NLS-containing cargoes, is also not functional in vivo. This suggests that the cell is dependent on the function of at least one bipartite NLS cargo that is imported into the nucleus by karyopherin alpha. Our experiments also reveal functional importance for the linker-binding region. This study provides insight into how changes in binding to cellular NLS sequences could impact cellular function. In addition, this work has led to the creation of conditional alleles of karyopherin alpha with well characterized defects in NLS binding that will be useful for identifying and characterizing novel NLS cargoes.  相似文献   

17.
18.
Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD (171EDVSRFIKGKLLQKQQKIYKDLERF195) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues 48KKSYQDPEIIAHSRPRK64 that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to 48EF49 abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the 48EF49 construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium.  相似文献   

19.
DNA topoisomerase IIα is the intracellular target for several important chemotherapeutic agents, and drug-resistant human tumor cell lines have been described in which deletions in the C-proximal region of this enzyme are associated with its cytoplasmic localization. We have identified multiple potential bipartite nuclear localization signal (NLS) sequences in this region using a modified definition of the motif, and in the present study, we have expressed five of these as fusion proteins with β-galactosidase. Only one sequence (spanning amino acids 1454 to 1497) was sufficient to cause strong nuclear localization. Subsequent mutation analyses indicated that this NLS sequence was bipartite and that both domains contain more than two basic amino acids. Substitution of the lysine residue at position 1492 in the second basic domain with glutamine resulted in a fusion protein that localized inefficiently to the nucleus, indicating that all three basic residues in this domain are necessary. Our results confirm that a broader definition is required to detect all potential bipartite NLS motifs in a polypeptide sequence, although functional tests are still essential for identification of those sequences actually capable of directing nuclear localization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号