首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autosomal dominant polycystic kidney disease (ADPKD) is one of the commonest inherited human disorders yet remains relatively unknown to the wider medical, scientific and public audience. ADPKD is characterised by the development of bilateral enlarged kidneys containing multiple fluid-filled cysts and is a leading cause of end-stage renal failure (ESRF). ADPKD is caused by mutations in two genes: PKD1 and PKD2. The protein products of the PKD genes, polycystin-1 and polycystin-2, form a calcium-regulated, calcium-permeable ion channel. The polycystin complex is implicated in regulation of the cell cycle via multiple signal transduction pathways as well as the mechanosensory function of the renal primary cilium, an enigmatic cellular organelle whose role in normal physiology is still poorly understood. Defects in cilial function are now documented in several other human diseases including autosomal recessive polycystic kidney disease, nephronophthisis, Bardet-Biedl syndrome and many animal models of polycystic kidney disease. Therapeutic trials in these animal models of polycystic kidney disease have identified several promising drugs that ameliorate disease severity. However, elucidation of the function of the polycystins and the primary cilium will have a major impact on our understanding of renal cystic diseases and will create exciting new opportunities for the design of disease-specific therapies.  相似文献   

2.
In higher eukaryotes, glucosylceramide is the simplest member and precursor of a fascinating class of membrane lipids, the glycosphingolipids. These lipids display an astounding variation in their carbohydrate head groups, suggesting that glycosphingolipids serve specialized functions in recognition processes. It is now realized that they are organized in signalling domains on the cell surface. They are of vital importance as, in their absence, embryonal development is inhibited at an early stage. Remarkably, individual cells can live without glycolipids, perhaps because their survival does not depend on glycosphingolipid-mediated signalling mechanisms. Still, these cells suffer from defects in intracellular membrane transport. Various membrane proteins do not reach their intracellular destination, and, indeed, some intracellular organelles do not properly differentiate to their mature stage. The fact that glycosphingolipids are required for cellular differentiation suggests that there are human diseases resulting from defects in glycosphingolipid synthesis. In addition, the same cellular differentiation processes may be affected by defects in the degradation of glycosphingolipids. At the cellular level, the pathology of glycosphingolipid storage diseases is not completely understood. Cell biological studies on the intracellular fate and function of glycosphingolipids may open new ways to understand and defeat not only lipid storage diseases, but perhaps other diseases that have not been connected to glycosphingolipids so far.  相似文献   

3.
Mucosal Toll-like receptors (TLRs) respond to pathogens, but remain inert to the indigenous flora, suggesting that the TLRs can receive pathogen-specific signals. For example, TLR4 signalling is activated in CD14-negative epithelial cells by P-fimbriated, uropathogenic Escherichia coli, but not by lipopolysaccharide. The fimbriae use glycosphingolipids as recognition receptors and there is release of ceramide, which is the membrane-anchoring domain of the receptors. In this study, ceramide was identified as a TLR4 agonist and as a putative signalling intermediate between the glycosphingolipid recognition receptors and TLR4. Exogenous ceramide activated a TLR4-dependent epithelial cell response, as shown by exposing stably transfected TLR4-positive or -negative human embryonal kidney cells to C2 and C6 ceramide. A similar, TLR4-dependent response occurred after deliberate release of endogenous long-chained ceramide with sphingomyelinase. Microbial ligands with glycosphingolipid specificity (P fimbriae or the B subunit of Shiga toxin) were shown to increase the levels of ceramide and to trigger a TLR4-dependent response in epithelial cells. The results show that ceramide activates TLR4 signalling and suggest that this mechanism might allow pathogens to elicit mucosal TLR4 responses by perturbing sphingolipid receptors for virulence ligands like P fimbriae.  相似文献   

4.
The host response to infection and inflammation is associated with multiple alterations in lipid metabolism. We have shown that endotoxin [lipopolysaccharide (LPS)] stimulates hepatic sphingolipid synthesis and increases ceramide and glucosylceramide (GlcCer) content in circulating lipoproteins in Syrian hamsters. LPS also increases the activity and mRNA levels of serine palmitoyltransferase (SPT) and GlcCer synthase, the committed enzymes in sphingolipid and glycosphingolipid (GSL) synthesis, respectively, in the liver. To determine whether sphingolipid and GSL metabolism are regulated in other tissues during the host response to infection, we examined the effect of LPS on the regulation of SPT and GlcCer synthase in extrahepatic tissues in Syrian hamsters. LPS significantly increased SPT activity in spleen and kidney after 16 h of treatment, but had no effect on SPT activity in lung and brain, suggesting that the effect of LPS on sphingolipid metabolism is tissue specific. LPS also increased SPT mRNA levels in spleen and kidney by approximately 3-fold, suggesting that the increase in SPT activity is due to an increase in SPT mRNA expression. LPS significantly increased GlcCer synthase activity in spleen and kidney, and produced 4- and 15-fold increases in GlcCer synthase mRNA levels in spleen and kidney, respectively. LPS treatment increased GlcCer content by 1.3-fold in spleen and by 6.2-fold in kidney. LPS also increased the content of ceramide trihexoside by 1.7-fold in spleen. These results suggest that LPS regulates sphingolipid and GSL metabolism in spleen and kidney. An increase in GSL metabolites in spleen and kidney during the host response to infection and inflammation may be required for modulation of immune responses and regulation of cell growth. -- Memon, R. A., W. M. Holleran, Y. Uchida, A. H. Moser, C. Grunfeld, and K. R. Feingold. Regulation of sphingolipid and glycosphingolipid metabolism in extrahepatic tissues by endotoxin. J. Lipid Res. 2001. 42: 452--459.  相似文献   

5.
The aim of radiotherapy is to eradicate cancer cells with ionizing radiation; tumor cell death following irradiation can be induced by several signaling pathways, most of which are triggered as a consequence of DNA damage, the primary and major relevant cell response to radiation. Several lines of evidence demonstrated that ceramide, a crucial sensor and/or effector of different signalling pathways promoting cell cycle arrest, death and differentiation, is directly involved in the molecular mechanisms underlying cellular response to irradiation. Most of the studies strongly support a direct relationship between ceramide accumulation and radiation-induced cell death, mainly apoptosis; for this reason, defining the contribution of the multiple metabolic pathways leading to ceramide formation and the causes of its dysregulated metabolism represent the main goal in order to elucidate the ceramide-mediated signaling in radiotherapy. In this review, we summarize the current knowledge concerning the different routes leading to ceramide accumulation in radiation-induced cell response with particular regard to the role of the enzymes involved in both ceramide neogenesis and catabolism. Emphasis is placed on sphingolipid breakdown as mechanism of ceramide generation activated following cell irradiation; the functional relevance of this pathway, and the role of glycosphingolipid glycohydrolases as direct targets of ionizing radiation are also discussed. These new findings add a further attractive point of investigation to better define the complex interplay between sphingolipid metabolism and radiation therapy.  相似文献   

6.
Glycosphingolipid storage disorders are inborn errors of metabolism caused by the defective activity of degradative enzymes in lysosomes. In this review, we summarize studies performed over the past few years attempting to define the secondary and down-stream biochemical and cellular pathways affected in GSL storage disorders that are responsible for neuronal dysfunction, a characteristic of most of these disorders. We focus mainly on the regulation of intracellular calcium homeostasis and phospholipid biosynthesis. These studies may help unravel new roles for glycosphingolipids in the regulation of normal cell physiology, as well as suggest potential new therapeutic options in the glycosphingolipid and other lysosomal storage disorders.  相似文献   

7.
Alzheimer disease is associated with extracellular deposits of amyloid beta-peptides in the brain. Amyloid beta-peptides are generated by proteolytic processing of the beta-amyloid precursor protein by beta- and gamma-secretases. The cleavage by secretases occurs predominantly in post-Golgi secretory and endocytic compartments and is influenced by cholesterol, indicating a role of the membrane lipid composition in proteolytic processing of the beta-amyloid precursor protein. To analyze the role of glycosphingolipids in these processes we inhibited glycosyl ceramide synthase, which catalyzes the first step in glycosphingolipid biosynthesis. The depletion of glycosphingolipids markedly reduced the secretion of endogenous beta-amyloid precursor protein in different cell types, including human neuroblastoma SH-SY5Y cells. Importantly, secretion of amyloid beta-peptides was also strongly decreased by inhibition of glycosphingolipid biosynthesis. Conversely, the addition of exogenous brain gangliosides to cultured cells reversed these effects. Biochemical and cell biological experiments demonstrate that the pharmacological reduction of cellular glycosphingolipid levels inhibited maturation and cell surface transport of the beta-amyloid precursor protein. In the glycosphingolipid-deficient cell line GM95, cellular levels and maturation of beta-amyloid precursor protein were also significantly reduced as compared with normal B16 cells. Together, these data demonstrate that glycosphingolipids are implicated in the regulation of the subcellular transport of the beta-amyloid precursor protein in the secretory pathway and its proteolytic processing. Thus, enzymes involved in glycosphingolipid metabolism might represent targets to inhibit the production of amyloid beta-peptides.  相似文献   

8.
Glycosphingolipids, sphingomyelin and cholesterol are often all found in the detergent resistant fraction of biological membranes and are therefore recognized as raft components, but they do not necessarily co-localize in the same lateral domains. From cell biological studies it is evident that different sphingolipid species can be found in different lateral regions within the same cellular membrane. Biophysical studies have shown that their tendency to co-localize with each other and with other membrane components is largely governed by structural features of all lipids present. Glycosphingolipids form gel-phase like domains in fluid lipid bilayers. Sphingomyelin readily associates with cholesterol, forming liquid-ordered phase domains, but glycosphingolipids do not readily form cholesterol-enriched domains by themselves. However, mixed sphingomyelin- and glycosphingolipid-rich domains appear to incorporate cholesterol. Recent studies indicate that the ceramide backbone structure as well as the number of sugar units and presence of charge in the glycosphingolipid head group will influence the partitioning of these lipids between lateral membrane domains. The properties of the domains will be largely influenced by the presence of glycosphingolipids, which have very high melting temperatures. The lateral partitioning of glycosphingolipid molecular species has only recently been studied more intensively, and a lot remains to be done in this field of research.  相似文献   

9.
Renal fibrosis is the common pathological hallmark of progressive chronic kidney disease (CKD) with diverse aetiologies. Recent researches have highlighted the critical role of hypoxia during the development of renal fibrosis as a final common pathway in end‐stage kidney disease (ESKD), which joints the scientist's attention recently to exploit the molecular mechanism underlying hypoxia‐induced renal fibrogenesis. The scaring formation is a multilayered cellular response and involves the regulation of multiple hypoxia‐inducible signalling pathways and complex interactive networks. Therefore, this review will focus on the signalling pathways involved in hypoxia‐induced pathogenesis of interstitial fibrosis, including pathways mediated by HIF, TGF‐β, Notch, PKC/ERK, PI3K/Akt, NF‐κB, Ang II/ROS and microRNAs. Roles of molecules such as IL‐6, IL‐18, KIM‐1 and ADO are also reviewed. A comprehensive understanding of the roles that these hypoxia‐responsive signalling pathways and molecules play in the context of renal fibrosis will provide a foundation towards revealing the underlying mechanisms of progression of CKD and identifying novel therapeutic targets. In the future, promising new effective therapy against hypoxic effects may be successfully translated into the clinic to alleviate renal fibrosis and inhibit the progression of CKD.  相似文献   

10.
11.
Glycosphingolipids are essential components of eukaryotic cell membranes and are involved in the regulation of cell growth, differentiation, and neoplastic transformation. In this work, we have modulated glycosphingolipid levels in CHO cells stably expressing the human serotonin1A receptor by inhibiting the activity of glucosylceramide synthase using (±)‐threo‐1‐phenyl‐2‐decanoylamino‐3‐morpholino‐1‐propanol (PDMP), a commonly used inhibitor of the enzyme. Serotonin1A receptors belong to the family of G‐protein‐coupled receptors and are implicated in the generation and modulation of various cognitive, behavioral, and developmental functions. We explored the function of the serotonin1A receptor under glycosphingolipid‐depleted condition by monitoring ligand‐binding activity and G‐protein coupling of the receptor. Our results show that ligand binding of the receptor is impaired under these conditions although the efficiency of G‐protein coupling remains unaltered. The expression of the receptor at the cell membrane appears to be reduced. Interestingly, our results show that the effect of glycosphingolipids on ligand binding caused by metabolic depletion of these lipids is reversible. These novel results demonstrate that glycosphingolipids are necessary for the function of the serotonin1A receptor. We discuss possible mechanisms of specific interaction of glycosphingolipids with the serotonin1A receptor that could involve the proposed ‘sphingolipid‐binding domain’.  相似文献   

12.
糖鞘脂是一类广泛分布在动物细胞膜表面的糖脂类物质,它在调控细胞识别、黏附、增殖以及凋亡等方面均有重要的生物学作用.本综述主要讨论了在现代分析技术范畴中,糖鞘脂的鉴定及其糖链结构的分离与解析方面的研究进展和糖鞘脂在癌症等疾病发生发展中所起的生物学功能,以及糖鞘脂作为疾病治疗靶标的可能性.随着现代仪器技术,尤其是质谱技术和色谱-质谱联用技术的发展,糖鞘脂的分离与检测也进入了高速发展的时代.目前,使用质谱技术在肝癌、结直肠癌、乳腺癌等恶性肿瘤的组织样本中均发现了不同种类糖鞘脂不同程度的异常表达.其中,岩藻糖基化的糖鞘脂上调表达在众多癌症糖鞘脂检测中尤为突出,故岩藻糖基化的糖鞘脂可能会成为一类癌症的早期诊断标志物.近年来,随着对糖鞘脂理解的不断深入,糖鞘脂在诸多疾病,如癌症血管生成过程中的功能研究成为了热点之一.例如,从肿瘤细胞表面脱落的大多数糖鞘脂在肿瘤微环境中主要起到了促进血管生成的作用,而与此相反的是,另一种结构简单的神经节苷脂GM3却起到了抑制血管生成的作用.本综述汇集了对上述现象在分子水平上的不同解读以及利用此现象对癌症靶向治疗的研究与探索,并对基于抑制糖鞘脂合成的靶向治疗的发展前景进行了分析展望.  相似文献   

13.
Medical interest in glycolipids has been mainly directed to the rare and complex glycosphingolipid storage disorders that are principally caused by unitary deficiencies of lysosomal acid hydrolases. However, glycolipids are critical components of cell membranes and occur within newly described membrane domains known as lipid rafts. Glycolipids are components of important antigen systems and membrane receptors; they participate in intracellular signalling mechanisms and may be presented to the immune system in the context of the novel CD1 molecules present on T lymphocytes. A knowledge of their mechanism of action in the control of cell growth and survival as well as developmental pathways is likely to shed light on the pathogenesis of the glycosphingolipid storage disorders as well as the role of lipid second messengers in controlling cell mobility and in the mobilization of intracellular calcium stores (a biological role widely postulated particularly for the lysosphingolipid metabolite sphingosine 1-phosphate). Other sphingolipid metabolites such as ceramide 1-phosphate may be involved in apoptotic responses and in phagocytosis and synaptic vesicle formation. The extraordinary pharmaceutical success of enzymatic complementation for Gaucher's disease using macrophage-targeted human glucocerebrosidase has focused further commercial interest in other glycolipid storage diseases: the cost of targeted enzyme therapy and its failure to restore lysosomal enzymatic deficiencies in the brain has also stimulated interest in the concept of substrate reduction therapy using diffusible inhibitory molecules. Successful clinical trials of the iminosugar N-butyldeoxynojirimycin in type 1 Gaucher's disease prove the principle of substrate reduction therapy and have attracted attention to this therapeutic method. They will also foster important further experiments into the use of glycolipid synthesis inhibitors for the severe neuronopathic glycosphingolipidoses, for which no definitive treatment is otherwise available. Future glycolipid research in medicine will be directed to experiments that shed light on the role of sphingolipids in signalling pathways, and in the comprehensive characterization and their secretory products in relation to the molecular pathogenesis of the storage disorders; experiments of use to improve the efficiency of complementing enzymatic delivery to the lysosomal compartment of storage cells are also needed. Further systematic screening for inhibitory compounds with specific actions in the pathways of glycosphingolipid biosynthesis will undoubtedly lead to clinical trials in the neuronopathic storage disorders and to wider applications in the fields of immunity and cancer biology.  相似文献   

14.
Numerous studies have demonstrated the participation of sphingolipids in signal transduction and regulation of cell growth. Several cellular stress agents have been shown to elevate ceramide, the basic precursor of all sphingolipids, initiating a cascade of events leading to arrest of the cell cycle, apoptosis and cell death. Aiming at inhibiting metabolic pathways of sphingolipid metabolism that might lead to an increase of cellular ceramide, we have synthesized non-natural analogs of ceramide, sphingosine and trimethylsphingosine. When the respective analogs were applied to HL60 human myeloid leukemic cells they inhibited the biosynthesis of sphingomyelin (SPM) and glycosphingolipids and induced apoptosis that led to cell death. A fluorescent procedure which has been developed for quantifying the biosynthesis of cellular ceramide indicated an increase in the ceramide content following an incubation with the synthetic analogs. These results suggest that the newly synthesized sphingolipid analogs might be valuable for potential application as a therapeutic modality in leukemia and other malignancies.  相似文献   

15.
Ca2+ is an important signalling molecule that regulates multiple cellular processes, including apoptosis. Although Ca2+ influx through transient receptor potential (TRP) channels in the plasma membrane is known to trigger cell death, the function of intracellular TRP proteins in the regulation of Ca2+‐dependent signalling pathways and apoptosis has remained elusive. Here, we show that TRPP2, the ion channel mutated in autosomal dominant polycystic kidney disease (ADPKD), protects cells from apoptosis by lowering the Ca2+ concentration in the endoplasmic reticulum (ER). ER‐resident TRPP2 counteracts the activity of the sarcoendoplasmic Ca2+ ATPase by increasing the ER Ca2+ permeability. This results in diminished cytosolic and mitochondrial Ca2+ signals upon stimulation of inositol 1,4,5‐trisphosphate receptors and reduces Ca2+ release from the ER in response to apoptotic stimuli. Conversely, knockdown of TRPP2 in renal epithelial cells increases ER Ca2+ release and augments sensitivity to apoptosis. Our findings indicate an important function of ER‐resident TRPP2 in the modulation of intracellular Ca2+ signalling, and provide a molecular mechanism for the increased apoptosis rates in ADPKD upon loss of TRPP2 channel function.  相似文献   

16.
In the three decades since the discovery of the Wnt1 proto-oncogene in virus-induced mouse mammary tumours, our understanding of the signalling pathways that are regulated by the Wnt proteins has progressively expanded. Wnts are involved in an complex signalling network that governs multiple biological processes and cross-talk with multiple additional signalling cascades, including the Notch, FGF (fibroblast growth factor), SHH (Sonic hedgehog), EGF (epidermal growth factor) and Hippo pathways. The Wnt signalling pathway also illustrates the link between abnormal regulation of the developmental processes and disease manifestation. Here we provide an overview of Wnt-regulated signalling cascades and highlight recent advances. We focus on new findings regarding the dedicated Wnt production and secretion pathway with potential therapeutic targets that might be beneficial for patients with Wnt-related diseases.  相似文献   

17.
There is mounting evidence linking Aβ42 generation in Alzheimer’s disease (AD) with sphingomyelin catabolism. Using microarray technology to study 17 brain regions from subjects with varying severity of AD and dementia we detected multiple gene expression abnormalities of the key enzymes that control sphingolipid metabolism. These changes were correlated with the progression of clinical dementia. The upregulation of gene expression of the enzymes controlling synthesis de novo of Cer and the downregulation of the enzymes involved in glycosphingolipid synthesis was evident as early in disease progression as in mild dementia. Together these changes suggest a shift in sphingolipid metabolism towards accumulation of Cer, depletion of glycosphingolipids and the reduction of synthesis of the anti-apoptosis signaling lipid—sphingosine 1-phosphate as a function of disease progression. This disrupted balance within the sphingolipid metabolism may trigger signaling events promoting neurodegeneration across cortical regions. This potential mechanism may provide a link between lipid metabolism disturbance and AD. Special issue dedicated to John P. Blass.  相似文献   

18.
Whereas targeting the cyst epithelium and its molecular machinery has been the prevailing clinical strategy for polycystic kidney disease, the endothelium, including blood vasculature and lymphatics, is emerging as an important player in this disorder. In this Review, we provide an overview of the structural and functional alterations to blood vasculature and lymphatic vessels in the polycystic kidney. We also discuss evidence for vascular endothelial growth factor signalling, otherwise critical for endothelial cell development and maintenance, as being a fundamental molecular pathway in polycystic kidney disease and a potential therapeutic target for modulating cyst expansion.  相似文献   

19.
The glycosphingolipid composition of the human hepatoma cell line,Hep-G2   总被引:2,自引:0,他引:2  
The origin of plasma glycosphingolipids in normal individuals and the mechanisms by which tumor-associated glycosphingolipid antigens enter the plasma in patients with cancer are largely unknown. The Hep-G2 human hepatoma cell line retains many of the characteristics of differentiated hepatocytes including the ability to synthesize and secrete lipoproteins. Preliminary results indicated that newly synthesized Hep-G2 cell glycosphingolipids are coupled to the secreted lipoproteins. This suggests that this cell line may offer an interesting model for studying glycosphingolipid secretion, transfer, and shedding. We now report on the chemical and immunological characterization of Hep-G2 cell glycosphingolipids. Five major glycosphingolipids were purified and biochemically characterized: glycosylceramide, lactosyl ceramide, ceramide trihexoside, ganglioside GM3, and lactosyl sulfatide. Four additional minor components (3-fucosyl-lactosamine containing glycolipids, asialo GM2, galactosylgloboside, and ganglioside GM1) were identified using a combination of exoglycosidase digestion and immunostaining of thin-layer chromatography plates with specific carbohydrate binding proteins. This demonstrates that although this cell line synthesizes a limited number of major glycosphingolipids, it retains the ability to produce at least small amounts of structures in the lactoneo, globo, and ganglio series of glycosphingolipids. These studies show that it will be possible to investigate the mechanisms of secretion by Hep-G2 cells of different classes of these molecules such as neutral glycosphingolipids, gangliosides, and sulfatides.  相似文献   

20.
The regulation of cell cycle and apoptosis is fundamental to the control of cell growth and organism homeostasis. Failure to efficiently regulate these processes often results in the increased cell growth observed in tumours. Accumulation of genetic lesions frequently eliminates these regulatory steps so it is imperative that multiple signalling pathways are employed to ensure that efficient control is maintained. Over the last few years a novel signalling pathway entered the limelight that prevents inappropriate activation of the cell cycle and can elicit apoptosis to limit cell numbers. Denoted the MST/hippo pathway, it is involved in regulating cell number in organism development and tumour progression. Here we aim to review the evidence for a conserved pathway from flies to mammals, and of equal importance to initiate the discussion on the additional cellular and signalling processes that have been adopted by this pathway to achieve further regulation and diversified cellular outcomes in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号