首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Vascular calcification refers to the pathological deposition of calcium and phosphate minerals into the vasculature. It is prevalent in atherosclerosis, ageing, type 2 diabetes mellitus and chronic kidney disease, thus, increasing morbidity and mortality from these conditions. Vascular calcification shares similar mechanisms with bone mineralization, with smooth muscle cells playing a critical role in both processes. In the last decade, a variety of microRNAs have been identified as key regulators for the differentiation, phenotypic switch, proliferation, apoptosis, cytokine production and matrix deposition in vascular smooth muscle cells during vascular calcification. Therefore, this review mainly discusses the roles of microRNAs in the pathophysiological mechanisms of vascular calcification in smooth muscle cells and describes several interventions against vascular calcification by regulating microRNAs. As the exact mechanisms of calcification remain not fully elucidated, having a better understanding of microRNA involvement in vascular calcification may give impetus to development of novel therapeutics for the control and treatment of vascular calcification.  相似文献   

4.
Osteoprotegerin (OPG), a member of the TNF receptor superfamily, was initially found to modulate bone mass by blocking osteoclast maturation and function. Rodent models have also revealed a role for OPG as an inhibitor of vascular calcification. However, the precise mode of how OPG blocks mineralization is unclear. In this study, OPG was found in an in vitro assay to significantly inhibit calcification of vascular smooth muscle cells (VSMC) induced by high calcium/phosphate (Ca/P) treatment (p = 0.0063), although this effect was blunted at high OPG concentrations. By confocal microscopy, OPG was detected in VSMC in the Golgi, the same localization seen in osteoblasts, which express OPG in bone. Treatment of VSMC by minerals (Ca, P, or both) induced OPG mRNA expression as assessed by real-time quantitative PCR, and VSMC derived from atherosclerotic plaque material also exhibited higher OPG expression as compared to control cells (p < 0.05). Furthermore, OPG was detected by Western blotting in matrix vesicles (MV), nanoparticles that are released by VSMC with the capacity to nucleate mineral. In atherosclerotic arteries, OPG colocalized immunohistochemically with annexin VI, a calcium-dependent membrane and phospholipid binding protein found in MV. Thus, the calcification inhibitor OPG is contained in crystallizing MV and has a biphasic effect on VSMC: physiologic concentrations inhibit calcification, whereas high concentrations commonly seen in patients with vascular disease have no effect. Like other calcification inhibitors, OPG may be specifically loaded into these nanoparticles to be deposited at remote sites, where it acts to inhibit calcification.  相似文献   

5.
Summary Studies of bovine carotid artery smooth muscle cells, during long-term in vitro subcultivation (up to 100 population doublings), have revealed phenotypic heterogeneity among cells, as characterized by differences in proliferative behavoir, cell morphology, and contractile-cytoskeletal protein profiles. In vivo, smooth muscle cells were spindle-shaped and expressed desmin and alpha-smooth muscle actin (50% of total actin) as their predominant cytoskeletal and contractile proteins. Within 24 h of culture, vimentin rather than desmin was the predominant intermediate filament protein, with little change in alpha-actin content. Upon initial subcultivation, all cells were flattened and fibroblastic in appearance with a concommitant fivefold reduction in alpha-actin content, whereas the beta and gamma nonmuscle actins predominated. In three out of four cell lines studied, fluctuations in proliferative activity were observed during the life span of the culture. These spontaneous fluctuations in proliferation were accompanied by coordinated changes in morphology and contractile-cytoskeletal protein profiles. During periods of enhanced proliferation a significant proportion of cells reverted to their original spindle-shaped morphology with a simultaneous increase in alpha-actin content (20 to 30% of total actin). These results suggest that in long-term culture smooth muscle cells undergo spontaneous modulations in cell phenotype and may serve as a useful model for studying the regulation of intracellular protein expression. This work was supported by grants from from National Institutes of Health, Bethesda, MD, to DMW (HL35684), JW (HL36412), and JM and RL (SCOR HL 14212).  相似文献   

6.
Guo YH  Gao W  Li Q  Li PF  Yao PY  Chen K 《Life sciences》2004,75(20):2483-2493
In a previous study, we have demonstrated that overexpression of the tissue inhibitors of metalloproteinases-4 (TIMP-4) can inhibit the neointima formation in the rat carotid model. To define the functions of tissue inhibitor of metalloproteinases-4 (TIMP-4) in SMCs, we transduced human TIMP-4 cDNA into rat aortic SMCs by using adenoviral vector. Overexpression of TIMP-4 blocked the conversion of pro-MMP-2 to the active form and inhibited basic fibroblast growth factor-induced migration by 56.7% (p < 0.01). Overexpression of TIMP-4 markedly increased apoptotic cell death without changing their proliferation. Importantly, overexpression of human TIMP-4 in the wall of balloon-injured rat carotid artery also increased SMC apoptosis. The percentages of TUNEL-positive cells of total cells increased significantly in AdTIMP-4 infected group compared with AdGFP infected group. These findings demonstrate that TIMP-4 can inhibit SMCs migration and induce apoptosis in vitro and in vivo, which may generate new targets for prevention and treatment of vascular diseases.  相似文献   

7.
A key event in neointima formation and atherogenesis is the migration of vascular smooth muscle cells (VSMCs) into the intima. This is controlled by cytokines and extracellular matix (ECM) components within the microenvironment of the diseased vessel wall. At present, these signals have only been partially identified. In this study, we demonstrate that Met, the receptor tyrosine kinase for hepatocyte growth factor (HGF), is expressed on VSMCs isolated from the intima of atherosclerotic plaques of carotid arteries. Stimulation with HGF led to activation of Met as well as to activation of PI3-K, PKB/Akt, MEK, and the MAP kinases Erk1 and -2. Moreover, HGF induced lamellipodia formation, a characteristic feature of motile cells, and promoted VSMC migration across fibronectin-coated filters. The HGF-induced cell migration was mediated by beta1 integrins and required PI3-K activation. Our results suggest a role for the HGF-Met signaling pathway in the pathogenesis of atherosclerosis and restenosis.  相似文献   

8.
9.
The genetic basis for the phenotypic switching of vascular smooth muscle cells (VSMCs) is unclear in atherosclerosis. Recent studies showed that the 21‐base pair deletion mutation (Δ21) in myocyte enhancer factor 2A (MEF2A) gene could be an inherited marker for coronary artery disease. MEF2A mutation may affect the phenotypic switching of VSMCs. Human aortic VSMCs were used. Four groups of VSMCs transfected with green fluorescent protein plasmid (control group), MEF2A wild‐type (WT) plasmid (WT group), MEF2A Δ21 plasmid (Δ21 group) or MEF2A siRNA (siRNA group) were studied. The proliferation of VSMCs was determined by methylthiazolyldiphenyl‐tetrazolium bromide, and the migration of VSMCs was measured by Millicell chamber. The protein expressions of MEF2A, smooth muscle α‐actin, SM22α, osteopontin and p38 mitogen‐activated protein kinase signaling pathway were detected by Western blotting. MEF2A protein expression was knockdown by siRNA transfection. MEF2A protein was overexpressed in WT and Δ21 groups. Δ21 and siRNA groups obviously showed more proliferation (methylthiazolyldiphenyl‐tetrazolium bromide, 0.63 vs 0.66 vs 0.31, P < 0.01) and migration (52.6 vs 58.0 vs 21.2, P < 0.01) of VSMCs as compared with the WT group. In addition, the transfection of Δ21 and siRNA could induce the down‐regulation of smooth muscle α‐actin and SM22α (P < 0.01) and the up‐regulation of osteopontin (P < 0.01) in VSMCs. The phosphorylated p38 signaling pathway expression was significantly enhanced in the Δ21 and siRNA groups as compared with that of the WT group (P < 0.01). These results suggest that MEF2A dominant negative mutation and RNA silence could induce the phenotypic switching of VSMCs, leading to its increased proliferation and migration, and p38 mitogen‐activated protein kinase signaling pathway may participate in it. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Vascular calcification (VC) is an active and cell-mediated process that shares many common features with osteogenesis. Knowledge demonstrates that in the presence of risk factors, such as hypertension, vascular smooth muscle cells (vSMCs) lose their contractile phenotype and transdifferentiate into osteoblastic-like cells, contributing to VC development. Recently, menaquinones (MKs), also known as Vitamin K2 family, has been revealed to play an important role in cardiovascular health by decreasing VC. However, the MKs' effects and mechanisms potentially involved in vSMCs osteoblastic transdifferentiation are still unknown. The aim of this study was to investigate the possible role of menaquinone-4 (MK-4), an isoform of MKs family, in the modulation of the vSMCs phenotype. To achieve this, vascular cells from spontaneously hypertensive rats (SHR) were used as an in vitro model of cell vascular dysfunction. vSMCs from Wistar Kyoto normotensive rats were used as control condition. The results showed that MK-4 preserves the contractile phenotype both in control and SHR-vSMCs through a γ-glutamyl carboxylase-dependent pathway, highlighting its capability to inhibit one of the mechanisms underlying VC process. Therefore, MK-4 may have an important role in the prevention of vascular dysfunction and atherosclerosis, encouraging further in-depth studies to confirm its use as a natural food supplement.  相似文献   

11.
Numerous studies have shown that both vasoconstrictive peptide endothelin-1 (ET-1) and inflammatory marker C-reactive protein (CRP) are implicated in the inflammatory process of atherosclerosis. The purpose of the present study was to observe effect of ET-1 on CRP production and the molecular mechanisms in rat vascular smooth muscle cells (VSMCs). The results showed that ET-1 was capable of stimulating VSMCs to produce CRP both in protein and in mRNA levels in vitro and in vivo. ETA receptor antagonist BQ123, but not ETB receptor antagonist BQ788, inhibited CRP production in VSMCs. In addition, ET-1 was able to elicit reactive oxygen species (ROS) generation and mitogen-activated protein kinase (MAPK) activation, and antioxidant pyrrolidine dithiocarbamate and p38MAPK inhibitor SB203580 inhibited ET-1-induced CRP expression. The results demonstrate that ET-1 induces CPR production in VSMCs via ETA receptor followed by ROS and MAPK signal pathway, which may contribute to better understanding of the role of ET-1 in inflammatory activation of the vessel wall during atherogenesis.  相似文献   

12.
Our goal was to characterize the role of integrin-linked kinase (ILK) in vascular smooth muscle cells (VSMC), which play a crucial role in atherogenesis. Transfection of VSMC with wild-type and dominant-negative ILK cDNA constructs revealed that ILK mediates migration and proliferation of VSMC but has no effect on VSMC survival. The pro-atherogenic mediator angiotensin II increases ILK protein expression and kinase activity while statin treatment down-regulates ILK in VSMC. Functionally, ILK is necessary for angiotensin II-mediated VSMC migration and proliferation. In VSMC transduced with dominant-negative ILK, statins mediate an additive inhibition of VSMC migration and proliferation, while transfection with wild-type ILK is sufficient to overcome the inhibitory effects of statin treatment on VSMC migration and proliferation. In vivo, ILK is expressed in VSMC of aortic sections from wild-type mice where it is down-regulated following statin treatment and up-regulated following induction of atherosclerosis in apoE-/- mice. These data identify ILK as a novel target in VSMC for anti-atherosclerotic therapy.  相似文献   

13.
目的:研究胚胎血管发育早期SMα-actin、SM22α、myocardin、平滑肌肌球蛋白重链(SMMHC)的表达规律,并初步探讨在此阶段血小板源性生长因子-BB(PDGF-BB)对血管平滑肌细胞(VSMCs)分化的影响。方法:采用转染平滑肌特异性蛋白SM22α启动子控制下表达增强型绿色荧光蛋白(GFP)报告基因载体的胚胎干细胞制备拟胚体(EBs),用免疫荧光染色、RT-PCR、Western blot分析SMα-actin、SM22α、myocardin、SMMHC的表达时相;然后分别用0μmol/L(对照组)、10μmol/L、50μmol/L AG1296(血小板源性生长因子受体抑制剂)处理EBs,观察三组SMα-actin、SM22α、myocardin、SMMHC在基因及蛋白水平上的表达变化。结果:胚胎血管发育早期SMα-actin、myocardin、SM22α、SMMHC分别在EBs第0(胚胎干细胞)、8、11、13d开始有表达。AG1296三种浓度处理后SMα-actin、myocardin、SM22α、SMMHC蛋白表达及myocardin、SM22α和SMMHC mRNA表达均无明显差异。结论:EBs发育过程中存在着自发的VSMCs分化,SMα-actin表达最早,依次为myocardin、SM22α、SMMHC;PDGF-BB对EBs分化早期VSMCs标志物表达的调控可能不是必要的。  相似文献   

14.
15.
平滑肌细胞(vascular smooth muscle cell,VSMC)的迁移对血管发育、动脉粥样硬化和术后再狭窄等起到关键性的作用。主要从激发VSMC迁移的关键炎性细胞因子、细胞间相互作用的核心成员、microRNA、细胞骨架和上述各因素的迁移信号通路这几方面来综述VSMC的迁移。  相似文献   

16.
Kanda Y  Watanabe Y 《Life sciences》2007,80(15):1409-1414
Cigarette smoke has been firmly established as an independent risk factor for atherosclerosis and other vascular diseases. The proliferation and migration of vascular smooth muscle cells (VSMC) induced by growth factors have been proposed to play an important role in the progression of atherosclerosis. In the present study, we investigated the effects of nicotine, which is one of the important constituents of cigarette smoke, on vascular endothelial growth factor (VEGF) release, in rat VSMC. The stimulation of cells with nicotine resulted in a time- and concentration-dependent release of VEGF. Hexamethonium, an antagonist of nicotinic acetylcholine receptor (nAChR), inhibited nicotine-induced VEGF release. We next investigated the mechanisms by which nicotine induces VEGF release in the cells. The nicotine-induced VEGF release was inhibited by treatment with U0126, a selective inhibitor of MEK, which attenuated the nicotine-induced ERK phosphorylation. Nicotine induced a transient phosphorylation of ERK. Furthermore, AG1478, a selective inhibitor of epidermal growth factor receptor (EGFR) kinase, inhibited nicotine-induced ERK phosphorylation and VEGF release. These data suggest that nicotine releases VEGF through nAChR in VSMC. Moreover, VEGF release induced by nicotine is mediated by an EGFR-ERK pathway in VSMC. VEGF may contribute to the risk of cardiovascular diseases in cigarette smokers.  相似文献   

17.
18.
Oxidized low-density lipoprotein (oxLDL)-induced apoptosis of vascular cells may participate to plaque instability and rupture. Caveolin-1 has emerged as an important regulator of several signal transduction pathways and processes that play a role in atherosclerosis. In this study we examined the potential role of caveolin-1 in the regulation of oxLDL-induced Ca2+ signaling and apoptosis in vascular smooth muscle cells (VSMC). Cells expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis, and this was correlated with enhanced Ca2+ entry and pro-apoptotic events. Moreover, caveolin-1 silencing by small interfering RNA decreased the level of apoptotic cells after oxLDL treatment. These findings provide new insights about the potential role of caveolin-1 in the regulation of oxLDL-induced apoptosis in vascular cells and its contribution to the instability of the plaque.  相似文献   

19.
Atherosclerosis is a pathologic process occurring within the artery, in which many cell types, including T cell, macrophages, endothelial cells, and smooth muscle cells, interact, and cause chronic inflammation, in response to various inner- or outer-cellular stimuli. Atherosclerosis is characterized by a complex interaction of inflammation, lipid deposition, vascular smooth muscle cell proliferation, endothelial dysfunction, and extracellular matrix remodeling, which will result in the formation of an intimal plaque. Although the regulation and function of vascular smooth muscle cells are important in the progression of atherosclerosis, the roles of smooth muscle cells in regulating vascular inflammation are rarely focused upon, compared to those of endothelial cells or inflammatory cells. Therefore, in this review, we will discuss here how smooth muscle cells contribute or regulate the inflammatory reaction in the progression of atherosclerosis, especially in the context of the activation of various membrane receptors, and how they may regulate vascular inflammation. [BMB Reports 2014; 47(1): 1-7]  相似文献   

20.
Extracellular calcium (Ca(2+)(o)) can act as a first messenger in many cell types through a G protein-coupled receptor, calcium-sensing receptor (CaR). It is still debated whether the CaR is expressed in vascular smooth muscle cells (VSMCs). Here, we report the expression of CaR mRNA and protein in rat aortic VSMCs and show that Ca(2+)(o) stimulates proliferation of the cells. The effects of Ca(2+)(o) were attenuated by pre-treatment with MAPK kinase 1 (MEK1) inhibitor, as well as an allosteric modulator, NPS 2390. Furthermore, stimulation of the VSMCs with Ca(2+)(o)-induced phosphorylation of ERK1/2, but surprisingly did not cause inositol phosphate accumulation. We were not able to conclusively state that the CaR mediates Ca(2+)(o)-induced cell proliferation. Rather, an additional calcium-sensing mechanism may exist. Our findings may be of importance with regard to atherosclerosis, an inflammatory disease characterized by abnormal proliferation of VSMCs and high local levels of calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号