首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since environmental effects of molecular traits are often questioned we analyze here the molecular effects of cadmium (Cd) on lipid pathways and their effects on tissues development. Lipids are an important energy source for the developing embryo, and accumulate in the ovary and hepatopancreas of decapod crustaceans. The extend of Cd affecting lipid storage and metabolism, is studied here with the freshwater crabs Sinopotamon henanense. Crabs were exposed to water-born Cd at 1.45, 2.9, 5.8 mg/l for 10, 15, and 20 days. With significantly increased Cd accumulation in exposed crabs, lipid content in hepatopancreas and ovary showed a time-dependent and concentration-dependent reduction, being at least one of the reasons for a lower ovarian index (OI) and hepatopancreatic index (HI). After 10-day exposure increased triglyceride (TG) level in hemolymph and up-regulation of pancreatic lipase (PL) activity in the hepatopancreas suggested an increased nutritional lipid uptake. However, two processes led to lower lipid levels upon Cd exposure: an increased utilization of lipids and a down-regulated lipoprotein lipase (LPL) led to insufficient lipid transport. 10-day Cd exposure also triggered the production of β-nicotinamide adenine dinucleotide 2''-phosphate reduced tetrasodium salt hydrate (NADPH), as well as to the synthesis of adenosine triphosphate (ATP) and fatty acids. With increasing exposure time, the crabs at 15 and 20-day exposure contained less lipid and TG, suggesting that more energy was consumed during the exposure time. Meanwhile, the level of NADPH, ATP and the activity of PL, LPL, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC) activity was down-regulated suggesting an impairment of the crab metabolism by Cd in addition to causing a lower lipid level.  相似文献   

2.
3.
Polyunsaturated fatty acids (PUFA) and a number of drugs (metformin, thiazolidinediones) and hormones (leptin, adiponectin) that activate AMP-activated protein kinase (AMPK) have been reported to improve insulin sensitivity. To determine whether PUFA activate AMPK, Sprague-Dawley rats were adapted to a 3h meal-feeding regimen using a fat-free diet (FFD) supplemented with fish oil (n-3) or triolein (n-9) for 7 days. No differences in hepatic AMPK activity were observed between the groups after 21h of fasting. On the other hand, hepatic AMPK phosphorylation was decreased in rats refed the FFD, the FFD+triolein, and the FFD+PUFA by 80%, 75%, and 50%, respectively, when assessed 2h after completion of a meal. In keeping with these changes, decreases in acetyl-CoA carboxylase phosphorylation and carnitine palmitoyl transferase-1 mRNA and increases in fatty acid synthase gene expression were greatest in rats fed the FFD and least in the PUFA-fed rats. The results indicate that dietary PUFA enhance hepatic AMPK activity in vivo, and implicate AMPK as a component of the nutrient-sensing mechanism through which dietary fatty acids and especially PUFA influence the regulation of hepatic lipid metabolism and gene expression.  相似文献   

4.
本试验旨在探究普安银鲫(Carassius auratus )卵黄囊仔鱼发育过程中ACC、FAS及CPT I活性变化及葡萄糖和维生素C溶液分别浸泡对它们的影响。采用酶学方法研究了普安银鲫卵黄囊仔鱼过程中ACC、FAS及CPT I活性变化的变化特点。结果显示:在卵黄囊仔鱼发育过程中,对照组与维生素C组中ACC和FAS活性呈上升趋势,CPT I活性呈“下降-上升”变化趋势,而葡萄糖组ACC、FAS及CPT I活性均呈上升趋势,且3种酶的活性均显著高于对照组(P<0.05)。维生素C组ACC活性在内源营养期显著高于对照组,FAS活性在混合营养期和外源营养期显著高于对照组,CPT I活性在内源营养期和外源营养期显著高于对照组(P<0.05)。研究表明:ACC、FAS及CPT I在维持普安银鲫卵黄囊仔鱼发育中脂质代谢的动态平衡起着重要作用,15g/L的葡萄糖溶液可通过调节仔鱼体内脂质代谢酶的活性而形成新的脂质代谢水平,以满足仔鱼生长发育需要;而30mg/L的维生素C对维持仔鱼发育中体内正常的脂质代谢具有重要作用。  相似文献   

5.
Melatonin exists as an active ingredient in several foods and has been reported to inhibit fatty liver disease in animals; however, its molecular mechanisms are not well elucidated. Herein, we explored effects of melatonin on lipid accumulation induced by oleic acid in HepG2 cells and characterized the underlying molecular mechanisms. Pretreatment with melatonin (0.1–0.3?mM) significantly inhibited accumulation of triglyceride and cholesterol induced by incubating HepG2 cells with high concentrations of oleic acid (oleic acid overload) (p?<?0.05). Melatonin pretreatment induced phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), causing their activation and inactivation, respectively. Expression levels of peroxisome proliferator activated receptor-α (PPARα) and its target gene carnitine palmitoyl-CoA transferase 1 (CPT1), which are associated with lipolysis, were upregulated by melatonin, whereas expression of sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and stearoyl-CoA desaturase-1 (SCD1), which are associated with lipogenesis, were downregulated. Melatonin did not change expression of genes involved in cholesterol metabolism, including 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) and SREBP-2. Melatonin inhibits lipid accumulation induced by oleic acid overload in HepG2 cells. The phosphorylation and activation of AMPK may have important roles in inactivating lipid anabolic pathways and activating triglyceride catabolic pathways.  相似文献   

6.
S-Allyl cysteine (SAC), a nontoxic garlic compound, has a variety of pharmacological properties, including antioxidant and hepatoprotective properties. In this report, we provide evidence that SAC prevented free fatty acid (FFA)-induced lipid accumulation and lipotoxicity in hepatocytes. SAC significantly reduced FFA-induced generation of reactive oxygen species, caspase activation and subsequent cell death. Also, SAC mitigated total cellular lipid and triglyceride accumulation in steatotic HepG2 cells. SAC significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in HepG2 cells. Additionally, SAC down-regulated the levels of sterol regulatory element binding protein-1 (SREBP-1) and its target genes, including ACC and fatty acid synthase. Use of a specific inhibitor showed that SAC activated AMPK via calcium/calmodulin-dependent kinase kinase (CaMKK) and silent information regulator T1. Our results demonstrate that SAC activates AMPK through CaMKK and inhibits SREBP-1-mediated hepatic lipogenesis. Therefore, SAC has therapeutic potential for preventing nonalcoholic fatty liver disease.  相似文献   

7.
Linoleic acid, and its hydroperoxides and secondary autoxidation products were orally administered to rats (400 mg/rat). Their effects on hepatic lipid metabolism were examined. Linoleic acid reduced the activities of de novo synthesis of fatty acids and acetyl-CoA carboxylase. It decreased the CoASH level and caused the accumulation of long-chain acyl-CoA. Hydroperoxides changed the compositions of unsaturated fatty acids in the hepatic lipids and lowered the content of neutral lipids. Secondary products stimulated carnitine palmitoyltransferase and decreased the content of neutral lipids. They reduced the activities of de novo synthesis of fatty acids and acetyl-CoA carboxylase, and the levels of CoASH and acetyl-CoA. Thus, the effect of secondary products was apparently different from those of linoleic acid and its hydroperoxides.  相似文献   

8.
9.
The conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACC) is the rate-limiting step in fatty acid biosynthesis. In this study, a gene coding for ACC was isolated and characterized from an oleaginous yeast, Lipomyces starkeyi. Real-time quantitative PCR (qPCR) analysis of L. starkeyi acetyl-CoA carboxylase gene (LsACC1) showed that the expression levels were upregulated with the fast accumulation of lipids. The LsACC1 was co-overexpressed with the glycerol 3-phosphate dehydrogenase gene (GPD1), which regulates lipids biosynthesis by supplying another substrates glycerol 3-phosphate for storage lipid assembly, in the non-oleaginous yeast Saccharomyces cerevisiae. Further, the S. cerevisiae acetyl-CoA carboxylase (ScACC1) was transferred with GPD1 and its function was analyzed in comparison with LsACC1. The results showed that overexpressed LsACC1 and GPD1 resulted in a 63% increase in S. cerevisiae. This study gives new data in understanding of the molecular mechanisms underlying the regulation of fatty acids and lipid biosynthesis in yeasts.  相似文献   

10.
The cell intrinsic innate immune responses provide a first line of defense against viral infection, and often function by targeting cellular pathways usurped by the virus during infection. In particular, many viruses manipulate cellular lipids to form complex structures required for viral replication, many of which are dependent on de novo fatty acid synthesis. We found that the energy regulator AMPK, which potently inhibits fatty acid synthesis, restricts infection of the Bunyavirus, Rift Valley Fever Virus (RVFV), an important re-emerging arthropod-borne human pathogen for which there are no effective vaccines or therapeutics. We show restriction of RVFV both by AMPK and its upstream activator LKB1, indicating an antiviral role for this signaling pathway. Furthermore, we found that AMPK is activated during RVFV infection, leading to the phosphorylation and inhibition of acetyl-CoA carboxylase, the first rate-limiting enzyme in fatty acid synthesis. Activating AMPK pharmacologically both restricted infection and reduced lipid levels. This restriction could be bypassed by treatment with the fatty acid palmitate, demonstrating that AMPK restricts RVFV infection through its inhibition of fatty acid biosynthesis. Lastly, we found that this pathway plays a broad role in antiviral defense since additional viruses from disparate families were also restricted by AMPK and LKB1. Therefore, AMPK is an important component of the cell intrinsic immune response that restricts infection through a novel mechanism involving the inhibition of fatty acid metabolism.  相似文献   

11.
12.

Background

Hypothalamic AMPK acts as a cell energy sensor and can modulate food intake, glucose homeostasis, and fatty acid biosynthesis. Intrahypothalamic fatty acid injection is known to suppress liver glucose production, mainly by activation of hypothalamic ATP-sensitive potassium (K(ATP)) channels. Since all models employed seem to involve malonyl-CoA biosynthesis, we hypothesized that acetyl-CoA carboxylase can modulate the counter-regulatory response independent of nutrient availability.

Methodology/Principal Findings

In this study employing immunoblot, real-time PCR, ELISA, and biochemical measurements, we showed that reduction of the hypothalamic expression of acetyl-CoA carboxylase by antisense oligonucleotide after intraventricular injection increased food intake and NPY mRNA, and diminished the expression of CART, CRH, and TRH mRNA. Additionally, as in fasted rats, in antisense oligonucleotide-treated rats, serum glucagon and ketone bodies increased, while the levels of serum insulin and hepatic glycogen diminished. The reduction of hypothalamic acetyl-CoA carboxylase also increased PEPCK expression, AMPK phosphorylation, and glucose production in the liver. Interestingly, these effects were observed without modification of hypothalamic AMPK phosphorylation.

Conclusion/Significance

Hypothalamic ACC inhibition can activate hepatic counter-regulatory response independent of hypothalamic AMPK activation.  相似文献   

13.
14.
15.
16.
17.
为研究低氧/复氧胁迫对克氏原螯虾(Procambarus clarkii)抗氧化及能量代谢的影响,将克氏原螯虾暴露于(1.0±0.1) mg/L急性低氧胁迫和后续(6.8±0.2) mg/L复氧环境中,于低氧胁迫1h、6h及复氧1h、12h分别采集肝胰腺、鳃和血淋巴,研究低氧/复氧胁迫下克氏原螯虾抗氧化-能量代谢酶的活力变化,分析鳃和肝胰腺组织的超微结构改变。在低氧胁迫下,肝胰腺和血淋巴中SOD酶活力显著下降(P<0.05);复氧以后,肝胰腺、血淋巴及鳃组织中SOD酶活力均出现了显著上升(P<0.05)。SOD酶活力变化可能与复氧过程中超氧阴离子自由基的过量产生有关。在复氧12h后,血淋巴和鳃组织中MDA含量均出现了显著性增加(P<0.01),提示机体细胞在复氧胁迫下产生了脂质过氧化。在低氧胁迫下,肝胰腺、鳃和血淋巴中ACP、AKP酶活力显著上升(P<0.05);在复氧12h后,肝胰腺和鳃组织中ACP酶活力显著降低(P<0.01)。显示低氧/复氧胁迫影响了机体的非特异性免疫应答。在急性低氧胁迫下,肝胰腺、血淋巴与鳃组织中的LDH含量和总ATPase活力均显...  相似文献   

18.
Activation of AMP-activated protein kinase (AMPK), a heterotrimeric energy-sensing protein, decreases lipid synthesis in liver tissue of various species; however, little is known about the role of AMPK in the regulation of fatty acid synthesis in bovine mammary epithelial cells. Here we report the presence of AMPK mRNA in MAC-T bovine mammary epithelial cells and mammary gland. Treatment of MAC-T with an AMPK activator dramatically decreased de novo fatty acid synthesis by inactivating acetyl-CoA carboxylase-α. Activation of AMPK also modified the mRNA expression of several lipogenic genes including fatty acid synthase, glycerol-3-phosphate acyltransferase, and fatty acid binding protein-3. Additionally, decreases in energy availability or rises in intracellular Ca2+ most likely activated AMPK in MAC-T. These data suggest the presence of LKB1 and Ca2+/calmodulin-dependent kinase kinase, two known AMPK kinases, in MAC-T. Identifying AMPK as a molecular target capable of modifying energy substrate utilization may result in the development of new technologies that increase milk production or modify milk composition during periods of increased energy demand.  相似文献   

19.
Alcoholic steatosis is the earliest and most common response to heavy alcohol intake, and may precede more severe forms of liver injury. Accumulation of fat, largely triglyceride, in hepatocytes results from the inhibition of fatty acid oxidation and excessive oxidative stress involving CYP2E1. This study evaluated the therapeutic effects of metadoxine, garlic oil or their combination on alcoholic steatosis. Feeding rats an alcohol-containing diet for 4 weeks elicited an increase in hepatic triglyceride content and induced CYP2E1. The concurrent administration of metadoxine and garlic oil (MG) to rats during the last week of the diet feeding efficaciously abrogated both fat accumulation and CYP2E1 induction as compared to the individual treatment at higher doses. Histopathology confirmed the ability of MG combination to inhibit lipid accumulation. Blood biochemistry verified improvement of liver function in rats treated with MG. Alcohol administration resulted in a decrease in AMP-activated protein kinase-alpha (AMPKalpha) phosphorylation, which was restored by MG treatments. Recovery of AMPK activity by MG was supported by an increase in acetyl-CoA carboxylase phosphorylation. Hepatic fatty acid synthase (FAS) expression was markedly decreased after alcohol consumption, which correlated with a decrease in AMPK activity and a commensurate increase in lipid content. Combined MG treatments caused restoration of the FAS level. These results demonstrate that the combination of MG effectively treats alcoholic steatosis with CYP2E1 inhibition, which may be associated with the recovery of AMPK activity, promising that the combination therapy may constitute an advance in the development of clinical candidates for alcoholic steatosis.  相似文献   

20.
Fatty acid transport proteins are integral membrane acyl-CoA synthetases implicated in adipocyte fatty acid influx and esterification. FATP-dependent production of AMP was evaluated using FATP4 proteoliposomes, and fatty acid-dependent activation of AMP-activated protein kinase (AMPK) was assessed in 3T3-L1 adipocytes. Insulin-stimulated fatty acid influx (palmitate or arachidonate) into cultured adipocytes resulted in an increase in the phosphorylation of AMPK and its downstream target acetyl-CoA carboxylase. Consistent with the activation of AMPK, palmitate uptake into 3T3-L1 adipocytes resulted in an increase in intracellular [AMP]/[ATP]. The fatty acid-induced increase in AMPK activation was attenuated in a cell line expressing shRNA targeting FATP1. Taken together, these results demonstrate that, in adipocytes, insulin-stimulated fatty acid influx mediated by FATP1 regulates AMPK and provides a potential regulatory mechanism for balancing de novo production of fatty acids from glucose metabolism with influx of preformed fatty acids via phosphorylation of acetyl-CoA carboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号