首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species of the mussel family Mytilidae have a special mitochondrial DNA (mtDNA) transmission system, known as doubly uniparental inheritance (DUI), which consists of a maternally inherited (F) and a paternally inherited (M) mitochondrial genome. Females are normally homoplasmic for the F genome and males are heteroplasmic mosaics, with their somatic tissues dominated by the maternal and their gonads dominated by the paternal genome. Several studies have indicated that the maternal genome may often be present in the male germ line. Here we report the results from the examination of mtDNA in pure sperm from more than 30 males of Mytilus galloprovincialis. In all cases, except one, we detected only the M genome. In the sperm of one male, we detected a paternal genome with an F-like primary sequence that was different from the sequence of the maternal genome in the animal's somatic tissues. We conclude that the male germ line is protected against invasion by the maternal genome. This is important because fidelity of gamete-specific transmission of the two mitochondrial genomes is a basic requirement for the stability of DUI.  相似文献   

2.
C. Saavedra  M. I. Reyero    E. Zouros 《Genetics》1997,145(4):1073-1082
We have investigated sex ratio and mitochondrial DNA inheritance in pair-matings involving five female and five male individuals of the Mediterranean mussel Mytilus galloprovincialis. The percentage of male progeny varied widely among families and was found to be a characteristic of the female parent and independent of the male to which it was mated. Thus sex-ratio in Mytilus appears to be independent of the nuclear genotype of the sperm. With a few exceptions, doubly uniparental inheritance (DUI) of mtDNA was observed in all families fathered by four of the five males: female and male progeny contained the mother's mtDNA (the F genome), but males contained also the father's paternal mtDNA (the M genome). Two hermaphrodite individuals found among the progeny of these crosses contained the F mitochondrial genome in the female gonad and both the F and M genomes in the male gonad. All four families fathered by the fifth male showed the standard maternal inheritance (SMI) of animal mtDNA: both female and male progeny contained only the maternal mtDNA. These observations illustrate the intimate linkage between sex and mtDNA inheritance in species with DUI and suggest different major roles for each gender. We propose a model according to which development of a male gonad requires the presence in the early germ cells of an agent associated with sperm-derived mitochondria, these mitochondria are endowed with a paternally encoded replicative advantage through which they overcome their original minority in the fertilized egg and this advantage (and, therefore, the chance of an early entrance into the germ line) is countered by a maternally encoded egg factor.  相似文献   

3.
This study presents evidence, using sequences of ribosomal 16S and COI mtDNA, for the presence of two mitochondrial genomes in Perumytilus purpuratus. This may be considered evidence of doubly uniparental mtDNA inheritance. The presence of the two types of mitochondrial genomes differentiates females from males. The F genome was found in the somatic and gonadal tissues of females and in the somatic tissues of males; the M genome was found in the gonads and mantle of males only. For the mitochondrial 16S region, ten haplotypes were found for the F genome (nucleotide diversity 0.004), and 7 haplotypes for the M genome (nucleotide diversity 0.001), with a distance Dxy of 0.125 and divergence Kxy of 60.33%. For the COI gene 17 haplotypes were found for the F genome (nucleotide diversity 0.009), and 10 haplotypes for the M genome (nucleotide diversity 0.010), with a genetic distance Dxy of 0.184 and divergence Kxy of 99.97%. Our results report the presence of two well-differentiated, sex-specific types of mitochondrial genome (one present in the male gonad, the other in the female gonad), implying the presence of DUI in P. purpuratus. These results indicate that care must be taken in phylogenetic comparisons using mtDNA sequences of P. purpuratus without considering the sex of the individuals.  相似文献   

4.
Doubly uniparental inheritance (DUI) is a particular mitochondrial DNA inheritance mode reported in a number of bivalves. DUI species show two types of mtDNA, one transmitted from females to daughters and sons (F mitotype) and another one from males to sons (M mitotype). In Veneridae, the existence of DUI has been investigated in several species but it was found in only two of them. In this study, we obtained partial sequences of rrnL, cytb and cox1 genes of males and females of Polititapes rhomboides from NW Spain and we demonstrated the existence of heteroplasmy in males, as expected under DUI. F and M mitotypes showed a taxon-specific phylogenetic pattern and similar evolutionary rates. We focused on cox1 for population genetic analysis, examining separately F and M mitotypes, but also F mitotypes from females (F) and males (F). In all cases, cox1 bears signs of strong purifying selection, with no apparent evidence of relaxed selection in the M genome, while the divergence between F and M genomes is in agreement with the neutral model of evolution. The cox1 polymorphism, higher at the M than at the F genome, also shows clear footprints of genetic hitchhiking with favourable mutations at other mtDNA loci, except for F. In terms of population structure, results suggest that the pattern depends on the examined mitotype (F, F♀, F or M).  相似文献   

5.
The system termed doubly uniparental inheritance (DUI) of mitochondrial transmission to progeny has been reported in Mytilus. Under DUI, it has been thought that males have both paternally (M type) and maternally (F type) transmitted mitochondrial DNA (mtDNA), and females have only F type. However, the presence of M type in females has been reported. To clarify the ratio of M type to F type mtDNA in female and male tissues to further our understanding of mitochondrial transmission, we developed a procedure to measure the copy numbers of the two types of mtDNA in Mytilus galloprovincialis using a real-time polymerase chain reaction assay. The following results were obtained by this method. In females, the copy numbers of M type mtDNA detected in adductor muscle, gonad and eggs were approximately 10 000-fold lower than those of F type. In males, F type dominated in adductor muscle, as in the female tissue. However, copy numbers of M type mtDNA were approximately 1000-fold higher than those of F type in gonad and 100 000-fold higher than those of F type in sperm. We examined the quantity relationship between the two types of mtDNA and the transmission mechanism of mtDNA in M. galloprovincialis.  相似文献   

6.
Distinct gender-associated mitochondrial DNA (mtDNA) lineages (i.e., lineages which are transmitted either through males or through females) have been demonstrated in two families of bivalves, the Mytilidae (marine mussels) and the Unionidae (freshwater mussels), which have been separated for more than 400 Myr. The mode of transmission of these M (for male-transmitted) and F (for female-transmitted) molecules has been referred to as doubly uniparental inheritance (DUI), in contrast to standard maternal inheritance (SMI), which is the norm in animals. A previous study suggested that at least three origins of DUI are required to explain the phylogenetic pattern of M and F lineages in freshwater and marine mussels. Here we present phylogenetic evidence based on partial sequences of the cytochrome c oxidase subunit I gene and the 16S RNA gene that indicates the DUI is a dynamic phenomenon. Specifically, we demonstrate that F lineages in three species of Mytilus mussels, M. edulis, M. trossulus, and M. californianus, have spawned separate lineages which are now associated only with males. This process is referred to as "masculinization" of F mtDNA. By extension, we propose that DUI may be a primitive bivalve character and that periodic masculinization events combined with extinction of previously existing M types effectively reset the time of divergence between conspecific gender-associated mtDNA lineages.   相似文献   

7.
In Mytilus mussels, paternal mitochondrial DNA (M type) from sperm is known to be transmitted to offspring. This phenomenon is called doubly uniparental inheritance (DUI). Under DUI, it has been reported that female mussels generally have only maternal mtDNA (F type). In this study, we examined the mode of mtDNA transmission in Mytilus galloprovincialis using M and F type-specific primer sets. The ratio of M and F types were measured in each sample by SNaPshot. The M type was detected in the adductor muscle and female gonad of all females. In unfertilized eggs spawned by 84.6% of females (22/26), M type was also detected. The F type was more abundant than the M type in all females. Although the ratio of M type in females was very low, all females contained the M type. From these results, we propose a new possibility about DUI inheritance. The presence of M type in unfertilized eggs indicates that the M type of eggs may also contribute to M type inheritance.  相似文献   

8.

Background  

Doubly uniparental inheritance (DUI) is an atypical system of animal mtDNA inheritance found only in some bivalves. Under DUI, maternally (F genome) and paternally (M genome) transmitted mtDNAs yield two distinct gender-associated mtDNA lineages. The oldest distinct M and F genomes are found in freshwater mussels (order Unionoida). Comparative analyses of unionoid mitochondrial genomes and a robust phylogenetic framework are necessary to elucidate the origin, function and molecular evolutionary consequences of DUI. Herein, F and M genomes from three unionoid species, Venustaconcha ellipsiformis, Pyganodon grandis and Quadrula quadrula have been sequenced. Comparative genomic analyses were carried out on these six genomes along with two F and one M unionoid genomes from GenBank (F and M genomes of Inversidens japanensis and F genome of Lampsilis ornata).  相似文献   

9.
Doubly uniparental inheritance (DUI) of mitochondrial (mt) DNA has been reported in the blue mussel Mytilus galloprovincialis. In DUI, males inherit both paternal (M type) and maternal (F type) mtDNA. Here we investigated changes in M type mtDNA copy numbers and mitochondrial mass in testicular cells by real‐time polymerase chain reaction and flow cytometry. The ratios of M type mtDNA copy numbers to nuclear DNA content were not different between haploid (1n), diploid (2n) and tetraploid (4n) spermatogenic cells. The mitochondrial mass decreased gradually during spermatogenesis. These results suggest that mtDNA and mitochondrial mass are maintained during spermatogenesis. We then traced M type mtDNA in larvae after fertilization. M type mtDNA was maintained up to 24 h after fertilization in the male‐biased crosses, but decreased significantly in female‐biased crosses (predicted by Mito Tracker staining pattern). These results are strikingly different from those reported for mammals and fish, where it is well known that the mitochondria and mtDNA are reduced during spermatogenesis and that sperm mitochondria and mtDNA are eliminated soon after fertilization. Thus, the M type mtDNA copy number is maintained during spermatogenesis and in the development of male larvae to sustain the DUI system in the blue mussel.  相似文献   

10.
Zbawicka M  Burzyński A  Wenne R 《Gene》2007,406(1-2):191-198
Marine mussels Mytilus possess two mitochondrial (mt) genomes, which undergo doubly uniparental inheritance (DUI). Female (F) and male (M) genomes are usually highly diverged at the sequence level. Both genomes contain the same set of metazoan genes (for 12 proteins, 2 rRNAs and 23 tRNAs), both lack the atp8 gene and have two tRNAs for methionine. However, recently recombination between those variants has been reported. Both original F and M mt genomes of M. trossulus were replaced by M. edulis mtDNA in the Baltic populations. Highly diverged M genome occurs rarely in the Baltic mussels. Full sequences of the M genome identified in males (sperm) and F genome in females (eggs) were obtained. Both genomes were diverged by 24% in nucleotide sequence, but had similar nucleotide composition and codon usage bias. Constant domain (CD) of the control region (CR), the tRNA and rRNA genes were the most conserved. The most diverged was the variable domain 1 (VD1) of the control region. The F genome was longer than M by 147 bp. and the main difference was localised in the VD1 region. No recombination was observed in whole mtDNA of both studied variants. Nuclear mitochondrial pseudogenes (numts) have not been found by hybridisation with probes complementary to several fragments of the Baltic M. trossulus mtDNA.  相似文献   

11.
Doubly Uniparental Inheritance (DUI) is one of the most striking exceptions to the common rule of standard maternal inheritance of metazoan mitochondria. In DUI, two mitochondrial genomes are present, showing different transmission routes, one through eggs (F-type) and the other through sperm (M-type). In this paper, we report results from a multiplex real-time quantitative polymerase chain reaction analysis on the Manila clam Venerupis philippinarum (formerly Tapes philippinarum). We quantified M- and F-types in somatic tissues, gonads, and gametes. Nuclear and external reference sequences were used, and the whole experimental process was designed to avoid any possible cross-contamination. In most male somatic tissues, the M-type is largely predominant: This suggests that the processes separating sex-linked mitochondrial DNAs (mtDNAs) in somatic tissues are less precise than in other DUI species. In the germ line, we evidenced a strict sex-specific mtDNA segregation because both sperm and eggs do carry exclusively M- and F-types, respectively, an observation that is in contrast with a previous analysis on Mytilus galloprovincialis. More precisely, whereas two mtDNAs are present in the whole gonad, only the sex-specific one is detected in gametes. Because of this, we propose that the mtDNA transmission is achieved through a three-checkpoint process in V. philippinarum. The cytological mechanisms of male mitochondria segregation in males and degradation in females during the embryo development (here named Checkpoint #1 and Checkpoint #2) are already well known for DUI species; a Checkpoint #3 would act when primordial germ cells (PGCs) are first formed and would work in both males and females. We believe that Checkpoint #3 is a mere variation of the "mitochondrial bottleneck" in species with standard maternal inheritance, established when their PGCs separate during embryo cleavage.  相似文献   

12.
In Mytilus mussels, paternal mitochondrial DNA (mtDNA) from sperm is known to be transmitted to offspring. This phenomenon is called doubly uniparental inheritance (DUI). Under DUI, sperm mtDNA (M type) is inherited only by males. Female mussels receive maternal mtDNA (F type). However, in our previous study, we showed female and unfertilized eggs have both F and M types. We hypothesized that the two M types both from sperm and unfertilized eggs were transmitted to offspring. To test the hypothesis, we examined the number of M type haplotypes in mature M. galloprovincialis. The M type in larvae was compared with those of the parents. Cross experiments were carried out to test the inheritance of M type. In six of 20 mature mussels, two M types were detected by sequence analysis and polymerase chain reaction-restriction fragment length polymorphism. In cross experiments of larval samples from five of 12 crosses, double peak wave was observed by single nucleotide polymorphisms analysis. In these larval samples, the higher peak wave was identical to the parental M type. Larvae received much more paternal M type than the maternal ones. We demonstrated that two M types from sperm and unfertilized eggs were transmitted to offspring in M. galloprovincialis.  相似文献   

13.
14.
Breton S  Burger G  Stewart DT  Blier PU 《Genetics》2006,172(2):1107-1119
Marine mussels of the genus Mytilus have an unusual mode of mitochondrial DNA (mtDNA) transmission termed doubly uniparental inheritance (DUI). Female mussels are homoplasmic for the F mitotype, which is inherited maternally, while males are usually heteroplasmic, carrying a mixture of the maternal F mitotype and the paternally inherited M genome. Two classes of M genomes have been observed: "standard" M genomes and "recently masculinized" M genomes. The latter are more similar to F genomes at the sequence level but are transmitted paternally like standard M genomes. In this study we report the complete sequences of two standard male M. edulis and one recently masculinized male M. trossulus mitochondrial genome. A comparative analysis, including the previously sequenced M. edulis F and M. galloprovincialis F and M mtDNAs, reveals that these genomes are identical in gene order, but highly divergent in nucleotide and amino acid sequence. The large amount (>20%) of nucleotide substitutions that fall in coding regions implies that there are several amino acid replacements between the F and M genomes, which likely have an impact on the structural and functional properties of the mitochondrial proteome. Correlation of the divergence rate of different protein-coding genes indicates that mtDNA-encoded proteins of the M genome are still under selective constraints, although less highly than genes of the F genome. The mosaic F/M control region of the masculinized F genome provides evidence for lineage-specific sequences that may be responsible for the different mode of transmission genetics. This analysis shows the value of comparative genomics to better understand the mechanisms of maintenance and segregation of mtDNA sequence variants in mytilid mussels.  相似文献   

15.

Background

Doubly Uniparental Inheritance (DUI) represents the most outstanding exception to matrilinear inheritance of mitochondrial DNA (mtDNA), typical of Metazoa. In a few bivalve mollusks, two sex-linked mtDNAs (the so-called M and F) are inherited in a peculiar way: both daughters and sons receive their F from the mother, whereas sons inherit M from the father (males do not transmit F to their progeny). This realizes a double mechanism of transmission, in which M and F mtDNAs are inherited uniparentally.DUI systems represent a unique experimental model for testing the evolutionary mechanisms that apply to mitochondrial genomes and their transmission patterns as well as to mtDNA recombination.

Results

A new case of DUI is described in Musculista senhousia (Mollusca: Bivalvia: Mytilidae). Its heteroplasmy pattern is in line with standard DUI. Sequence variability analysis evidenced two main results: F haplotypes sequence variability is higher than that of M haplotypes, and F mitochondrial haplotypes experience a higher mutation rate in males' somatic tissues than in females' ones. Phylogenetic analysis revealed also that M. senhousia M and F haplotypes cluster separately from that of the other mytilids.

Conclusion

Sequence variability analysis evidenced some unexpected traits. The inverted variability pattern (the F being more variable than M) was new and it challenges most of the rationales proposed to account for sex-linked mtDNA evolution. We tentatively related this to the history of the Northern Adriatic populations analyzed. Moreover, F sequences evidenced a higher mutation level in male's soma, this variability being produced de novo each generation. This suggests that mechanisms evolved to protect mtDNA in females (f.i. antioxidant gene complexes) might be under relaxed selection in males. Phylogenetic analysis of sex-linked haplotypes confirmed that they have switched their roles during the evolutionary history of mytilids, at variance to what has been observed in unionids. Consequently, reciprocal monophyly of M and F lineages got easily lost because of role-reversals and consequent losses of M lineages, as already observed in Mytilus.
  相似文献   

16.
Doubly uniparental inheritance (DUI) is a mode of inheriting mitochondrial DNA that is distinct from strictly maternal inheritance. It has been described in nine and three families of marine and freshwater mussels, respectively, including the European margaritiferids and unionids. Among the 16 freshwater species of Unionida inhabiting Europe, DUI has been described in 9 species of dioecious mussels and was absent from a single hermaphroditic species and from secondary hermaphroditic specimens. The DUI freshwater mussels include two vastly genetically different mitochondrial genomes: maternal (F genome) and paternal (M genome), which coexist within the same specimen but in different tissues. The F genome is present in all female tissues and somatic male tissues. It is inherited in the typical, maternal, manner. Conversely, the M genome is located primarily in the male gonads and generative cells, and is inherited paternally. Dioecious Unionidae display unique characteristics that have been interrelated for over 200 million years: a high fidelity of the transmission of the F and M genomes in DUI and two paths of spermatogenesis–the typical path that produces sperm cells containing mitochondria with the F genome and the atypical path that produces sperm cells with the M genome. The mitogenomes of freshwater mussels display unique features that are not present in any other animal, that is, an additional, gender-specific gene and an elongated cox2 gene occurring exclusively in the M genome. These features mean that the mitochondria, in addition to their basic function of producing energy, also may take part in determining sex in these dioecious organisms.  相似文献   

17.
18.
Cao L  Kenchington E  Zouros E 《Genetics》2004,166(2):883-894
In Mytilus, females carry predominantly maternal mitochondrial DNA (mtDNA) but males carry maternal mtDNA in their somatic tissues and paternal mtDNA in their gonads. This phenomenon, known as doubly uniparental inheritance (DUI) of mtDNA, presents a major departure from the uniparental transmission of organelle genomes. Eggs of Mytilus edulis from females that produce exclusively daughters and from females that produce mostly sons were fertilized with sperm stained with MitoTracker Green FM, allowing observation of sperm mitochondria in the embryo by epifluorescent and confocal microscopy. In embryos from females that produce only daughters, sperm mitochondria are randomly dispersed among blastomeres. In embryos from females that produce mostly sons, sperm mitochondria tend to aggregate and end up in one blastomere in the two- and four-cell stages. We postulate that the aggregate eventually ends up in the first germ cells, thus accounting for the presence of paternal mtDNA in the male gonad. This is the first evidence for different behaviors of sperm mitochondria in developing embryos that may explain the tight linkage between gender and inheritance of paternal mitochondrial DNA in species with DUI.  相似文献   

19.
Many bivalvian mollusks have a sperm-transmitted mitochondrial genome (M), along with the standard egg-transmitted one (F). The phenomenon, known as doubly uniparental inheritance (DUI) of mtDNA, is the only known case in which biparental inheritance of a cytoplasmic genome is the rule rather than the exception. In the mussel Mytilus sperm mitochondria disperse randomly among blastomeres in female embryos, but form an aggregate and stay in the same blastomere in male embryos. In adults, somatic tissues of both sexes are dominated by the F genome. Sperm contains only the M genome and eggs the F (and perhaps traces of M). A female produces mostly daughters, mostly sons, or both sexes in about equal numbers, irrespective of its mate. Thus maleness and M mtDNA fate are tightly linked and under maternal control. Hybridization and triploidization affect the former but not the latter, which suggests that the two are not causally linked. Gene content and arrangement are the same in conspecific F and M genomes, but primary sequence has diverged from 20 % to 40 %, depending on species. The two genomes differ at the control region (CR). Synonymous substitutions accumulate faster in the M than the F genome and non-synonymous even faster. Expression studies indicate that the M genome is active only at spermatogenesis. These observations suggest that the M genome is under a more relaxed selective constraint than the F. Some mytilid species carry, in low frequencies, sperm-transmitted mtDNAs whose primary sequence is of the F type and the CR is an F/M mosaic (“masculinized” genomes). In venerids sperm mitochondria behavior, M genome fate and sex determination are as in mytilids. In unionids the M genome also evolves faster than the F and F/M sequence divergence reaches 50 %. The identification of F-specific and M-specific open reading frames in non-coding regions of unionids and mytilids, in conjunction with the CR’s mosaic structure of masculinized genomes, suggest that the mitochondrial genomes of species with DUI carry sequences that affect their transmission route. A model that incorporates these findings is presented in this review.  相似文献   

20.
Several species from a number of bivalve molluscan families are known to have a paternally transmitted mitochondrial genome, along with the standard maternally transmitted one. The main characteristic of the phenomenon, known as doubly uniparental inheritance (DUI), is the coupling of sex and mtDNA inheritance: males receive both genomes but transmit only the paternal to their progeny; females either do not have the paternal genome or, if they do, they do not transmit it to their progeny. In the families Mytilidae and Veneridae, both of which have DUI, a female individual is either female‐biased (it produces only, or nearly so, female progeny), male‐biased (it produces mainly male progeny) or non‐biased (it produces both genders in intermediate frequencies). Here we present evidence for a same pattern in the freshwater mussel, Unio delphinus (Unionidae). These results suggest that the maternal control of whether a fertilized egg will develop into a male or a female individual (and the associated feature of whether it will inherited or not inherit the paternal mtDNA) is a general characteristic of species with DUI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号