首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular endothelial growth factor (VEGF) is a hypoxia-induced angiogenic protein that exhibits a broad range of biological and pathological effects in wet age-related macular degeneration and proliferative diabetic retinopathy. However, its specific mechanism is still not fully understood. Here, we examined the effects of VEGF on choroid-retinal endothelial cells (RF/6A) proliferation and tube formation, and the underlying signal pathways responsible in this process. RF/6A cells were pretreated with MEK inhibitor or PI3K inhibitor, and then incubated in a hypoxia chamber. Real-time PCR and Western blot analysis were carried out to explore VEGF expression on mRNA and protein levels. Hypoxia inducible factor-1α (HIF-1α) and VEGFR2 expression levels were also investigated in the presence and absence of hypoxic conditions. CCK-8 analysis and tube formation assay were tested under hypoxia, exogenous recombinant VEGF, and different signal pathway inhibitors, respectively. Mean while, the PI3K/Akt and MEK/ERK pathways in this process were also investigated. Our results showed that VEGF, HIF-1α, VEGFR2, p-ERK, and p-Akt were up-regulated in RF/6A cells under hypoxic conditions. MEK inhibitor (PD98059) and PI3K inhibitor (LY294002) decreased ERK and Akt activity, respectively, and reduced VEGF expression. VEGF-induced RF/6A proliferation and tube formation requires MEK/ERK and PI3K/Akt signaling, and both of the two pathways were needed in regulating VEGF expression. These suggest that VEGF plays an important role in RF/6A proliferation and tube formation, and MEK/ERK and PI3K/Akt pathway may be responsible for this process.  相似文献   

2.
3.
We investigated the molecular effect and signal pathway of icariin, a major flavonoid of Epimedium koreanum Nakai, on angiogenesis. Icariin stimulated in vitro endothelial cell proliferation, migration, and tubulogenesis, which are typical phenomena of angiogenesis, as well as increased in vivo angiogenesis. Icariin activated the angiogenic signal modulators, ERK, phosphatidylinositol 3-kinase (PI3K), Akt, and endothelial nitric oxide synthase (eNOS), and increased NO production, without affecting VEGF expression, indicating that icariin may directly stimulate angiogenesis. Icariin-induced ERK activation and angiogenic events were significantly inhibited by the MEK inhibitor PD98059, without affecting Akt and eNOS phosphorylation. The PI3K inhibitor Wortmannin suppressed icariin-mediated angiogenesis and Akt and eNOS activation without affecting ERK phosphorylation. Moreover, the NOS inhibitor NMA partially reduced the angiogenic activity of icariin. These results suggest that icariin stimulated angiogenesis by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent signal pathways and may be a useful drug for angiogenic therapy.  相似文献   

4.
Angiogenesis, or neovascularization, is a finely balanced process controlled by pro- and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) is a major pro-angiogenic factor, whereas pigment epithelial-derived factor (PEDF) is the most potent natural angiogenesis inhibitor. In this study, the regulatory role of bone marrow stromal cells (BMSCs) during angiogenesis was assessed by the endothelial differentiation potential, VEGF/PEDF production and responses to pro-angiogenic and hypoxic conditions. The in vivo regulation of blood vessel formation by BMSCs was also explored in a SCID mouse model. Results showed that PEDF was expressed more prominently in BMSCs compared to VEGF. This contrasted with human umbilical vein endothelial cells (HUVECs) where the expression of VEGF was higher than that of PEDF. The ratio of VEGF/PEDF gene expression in BMSCs increased when VEGF concentration reached 40ng/ml in the culture medium, but decreased at 80ng/ml. Under CoCl(2)-induced hypoxic conditions, the VEGF/PEDF ratio of BMSCs increased significantly in both normal and angiogenic culture media. There was no expression of endothelial cell markers in BMSCs cultured in either pro-angiogenic or hypoxia culture conditions when compared with HUVECs. The in vivo study showed that VEGF/PEDF expression closely correlated with the degree of neovascularization, and that hypoxia significantly induced pro-angiogenic activity in BMSCs. These results indicate that, rather than being progenitors of endothelial cells, BMSCs play an important role in regulating the neovascularization process, and that the ratio of VEGF and PEDF may, in effect, be an indicator of the pro- or anti-angiogenic activities of BMSCs.  相似文献   

5.
Forskolin, a potent activator of adenylyl cyclases, has been implicated in modulating angiogenesis, but the underlying mechanism has not been clearly elucidated. We investigated the signal mechanism by which forskolin regulates angiogenesis. Forskolin stimulated angiogenesis of human endothelial cells and in vivo neovascularization, which was accompanied by phosphorylation of CREB, ERK, Akt, and endothelial nitric oxide synthase (eNOS) as well as NO production and VEGF expression. Forskolin-induced CREB phosphorylation, VEGF promoter activity, and VEGF expression were blocked by the PKA inhibitor PKI. Moreover, phosphorylation of ERK by forskolin was inhibited by the MEK inhibitor PD98059, but not PKI. The forskolin-induced Akt/eNOS/NO pathway was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, but not significantly suppressed by PKI. These inhibitors and a NOS inhibitor partially inhibited forskolin-induced angiogenesis. The exchange protein directly activated by cAMP (Epac) activator, 8CPT-2Me-cAMP, promoted the Akt/eNOS/NO pathway and ERK phosphorylation, but did not induce CREB phosphorylation and VEGF expression. The angiogenic effect of the Epac activator was diminished by the inhibition of PI3K and MEK, but not by the PKA inhibitor. Small interfering RNA-mediated knockdown of Epac1 suppressed forskolin-induced angiogenesis and phosphorylation of ERK, Akt, and eNOS, but not CREB phosphorylation and VEGF expression. These results suggest that forskolin stimulates angiogenesis through coordinated cross-talk between two distinct pathways, PKA-dependent VEGF expression and Epac-dependent ERK activation and PI3K/Akt/eNOS/NO signaling.  相似文献   

6.
CXC chemokine receptor 4 (CXCR4) has been shown to play a critical role in chemotaxis and homing, which are key steps in cancer metastasis. There is also increasing evidence that links this receptor to angiogenesis; however, its molecular basis remains elusive. Vascular endothelial growth factor (VEGF), one of the major angiogenic factors, promotes the formation of leaky tumor vasculatures that are the hallmarks of tumor progression. Here, we investigated whether CXCR4 induces the expression of VEGF through the PI3K/Akt pathway. Our results showed that CXCR4/CXCL12 induced Akt phosphorylation, which resulted in upregulation of VEGF at both the mRNA and protein levels. Conversely, blocking the activation of Akt signaling led to a decrease in VEGF protein levels; blocking CXCR4/CXCL12 interaction with a CXCR4 antagonist suppressed tumor angiogenesis and growth in vivo. Furthermore, VEGF mRNA levels correlated well with CXCR4 mRNA levels in patient tumor samples. In summary, our study demonstrates that the CXCR4/CXCL12 signaling axis can induce angiogenesis and progression of tumors by increasing expression of VEGF through the activation of PI3K/Akt pathway. Our findings suggest that targeting CXCR4 could provide a potential new anti-angiogenic therapy to suppress the formation of both primary and metastatic tumors.  相似文献   

7.
Angiogenesis is essential for transplantation of mesenchymal stem cells (MSCs). Vascular endothelial growth factor (VEGF) is one of the most potent angiogenic factors identified to date. Elevated VEGF levels in MSCs correlate with the potential of MSCs transplantation. As an indirect angiogenic agent, transforming growth factor-β1 (TGF-β1) plays a pivotal role in the regulation of vasculogenesis and angiogenesis. However, the effect of TGF-β1 on VEGF synthesis in MSCs is still unknown. Besides, the intracellular signaling mechanism by which TGF-β1 stimulates this process remains poorly understood. In this article, we demonstrated that exposure of MSCs to TGF-β1 stimulated the synthesis of VEGF. Meanwhile, TGF-β1 stimulated the phosphorylation of Akt and extracellular signal-regulated kinase 1/2 (ERK1/2). Moreover, Ly 294002, a specific inhibitor of phosphatidylinositol-3-kinase (PI3K)/Akt significantly attenuated the VEGF synthesis stimulated by TGF-β1. Additionally, U0126, a specific inhibitor of ERK1/2, also significantly attenuated the TGF-β1-stimulated VEGF synthesis. These results indicated that TGF-β1 enhanced VEGF synthesis in MSCs, and the Akt and ERK1/2 activation were involved in this process.  相似文献   

8.
Increasing evidence suggests that bone marrow-derived mesenchymal stem cells (MSCs) are recruited into the stroma of developing tumors where they contribute to cancer progression. MSCs produce different growth factors that sustain tumor-associated neo-angiogenesis. Since the majority of carcinomas secrete ligands of the epidermal growth factor receptor (EGFR), we assessed the role of EGFR signaling in regulating the release of angiogenic factors in MSCs. Treatment of human primary MSCs and of the human osteoblastic cell line hFOB with transforming growth factor α (TGF-α), one of the main ligands of the EGFR, significantly induced activation of this receptor and of different intracellular signaling proteins, including the PI3K/AKT and the MEK/MAPK pathways. TGF-α induced a significant increase in the levels of secretion of vascular endothelial growth factor in both MSCs and hFOB. Conditioned medium from TGF-α treated MSCs showed an higher in vivo angiogenic effect as compared with medium from untreated cells. Treatment of MSCs with TGF-α also produced a significant increase in the secretion of other angiogenic growth factors such as angiopoietin-2, granulocyte-colony stimulating factor, hepatocyte growth factor, interleukin (IL)-6, IL-8, and platelet-derived growth factor-BB. Using selective MEK and PI3K inhibitors, we found that both MEK/MAPK and the PI3K/AKT signaling pathways mediate the ability of TGF-α to induce secretion of angiogenic factors in MSCs. Finally, stimulation with TGF-α increased the ability of MSCs to induce migration of MCF-7 breast cancer cells. These data suggest that EGFR signaling regulates the ability of MSCs to sustain cancer progression through the release of growth factors that promote neo-angiogenesis and tumor cell migration.  相似文献   

9.
Vascular endothelial growth factor (VEGF) is known as a key regulator of angiogenesis during endochondral bone formation. Recently, we demonstrated that TNF-related activation-induced cytokine (TRANCE or RANKL), which is essential for bone remodeling, also had an angiogenic activity. Here we report that VEGF up-regulates expression of receptor activator of NF-kappa B (RANK) and increases angiogenic responses of endothelial cells to TRANCE. Treatment of human umbilical vein endothelial cells (HUVECs) with VEGF increased both RANK mRNA and surface protein expression. Although placenta growth factor specific to VEGF receptor-1 had no significant effect on RANK expression, inhibition of downstream signaling molecules of the VEGF receptor-2 (Flk-1/KDR) such as Src, phospholipase C, protein kinase C, and phosphatidylinositol 3'-kinase suppressed VEGF-stimulated RANK expression in HUVECs. Moreover, the MEK inhibitor PD98059 or expression of dominant negative MEK1 inhibited induction of RANK by VEGF but not the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). VEGF potentiated TRANCE-induced ERK activation and tube formation via RANK up-regulation in HUVECs. Together, these results show that VEGF enhances RANK expression in endothelial cells through Flk-1/KDR-protein kinase C-ERK signaling pathway, suggesting that VEGF plays an important role in modulating the angiogenic action of TRANCE under physiological or pathological conditions.  相似文献   

10.
Phosphoinositide 3-kinase (PI3K) pathway exerts its effects through Akt, its downstream target molecule, and thereby regulates various cell functions including cell proliferation, cell transformation, apoptosis, tumor growth, and angiogenesis. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) has been implicated in regulating cell survival signaling through the PI3K/Akt pathway. However, the mechanism by PI3K/PTEN signaling regulates angiogenesis and tumor growth in vivo remains to be elucidated. Vascular endothelial growth factor (VEGF) plays a pivotal role in tumor angiogenesis. The effect of PTEN on VEGF-mediated signal in pancreatic cancer is unknown. This study aimed to determine the effect of PTEN on both the expression of VEGF and angiogenesis. Toward that end, we used the siRNA knockdown method to specifically define the role of PTEN in the expression of VEGF and angiogenesis. We found that siRNA-mediated inhibition of PTEN gene expression in pancreatic cancer cells increase their VEGF secretion, up-modulated the proliferation, and migration of co-cultured vascular endothelial cell and enhanced tubule formation by HUVEC. In addition, PTEN modulated VEGF-mediated signaling and affected tumor angiogenesis through PI3K/Akt/VEGF/eNOS pathway.  相似文献   

11.
12.
Urotensin-II (U-II) is an endogenous peptide recently characterized as a "nonclassic" pro-angiogenic cytokine. In fact, human vascular endothelial cells express the U-II receptor and exhibit a strong in vitro angiogenic response to the peptide, which was specifically triggered by the binding of U-II to its receptor and involved the activation of ERK1/2 and PI3K/Akt signaling pathways. Moreover, available studies, designed to investigate the pro-angiogenic effect quite shortly following U-II stimulation, suggested that the angiogenic action of the peptide was direct and not associated with an increased expression of vascular endothelial growth factor (VEGF) and/or its receptors. In the present study, the expression of three pro-angiogenic factors, namely VEGF, endothelin-1, and adrenomedullin, was studied in human umbilical vein endothelial cells (HUVEC) for longer times of U-II stimulation. RT-PCR and Western blot indicated that in HUVEC, exposed for at least 24h to U-II, the expression of the three angiogenic molecules was significantly increased at both mRNA and protein level, opening the possibility that U-II, not only could exert a direct stimulation of an angiogenic phenotype in endothelial cells quite shortly following exposure to the peptide, but could also further enhance the process indirectly by inducing in the cells a delayed production of other pro-angiogenic factors. Interestingly, a preliminary analysis of the time course of the in vitro capillary-like pattern formation was consistent with this view, suggesting a two phase temporal dynamics of the process.  相似文献   

13.
The natural product sesamin has been known to act as a potent antioxidant and prevent endothelial dysfunction. We here found that sesamin increased in vitro angiogenic processes, such as endothelial cell proliferation, migration, and tube formation, as well as neovascularization in an animal model. This compound elicited the activation of multiple angiogenic signal modulators, such as ERK, Akt, endothelial nitric oxide synthase (eNOS), NO production, FAK, and p38 MAPK, but not Src. The MEK inhibitor PD98059 and the PI3K inhibitor Wortmannin specifically inhibited sesamin-induced activation of the ERK and Akt/eNOS pathways. These inhibitors reduced angiogenic events, with high specificity for MEK/ERK-dependent cell proliferation and migration and PI3K/Akt-mediated tube formation. Moreover, inhibition of p38 MAPK effectively inhibited sesamin-induced cell migration. The angiogenic activity of sesamin was not associated with VEGF expression. Furthermore, this compound did not induce vascular permeability and upregulated ICAM-1 and VCAM-1 expression, which are hallmarks of vascular inflammation. These results suggest that sesamin stimulates angiogenesis in vitro and in vivo through the activation of MEK/ERK-, PI3K/Akt/eNOS-, p125FAK-, and p38 MAPK-dependent pathways, without increasing vascular inflammation, and may be used for treating ischemic diseases and tissue regeneration.  相似文献   

14.
Vascular endothelial growth factor (VEGF) plays a dominant role in angiogenesis. While inhibitors of the VEGF pathway are approved for the treatment of a number of tumor types, the effectiveness is limited and evasive resistance is common. One mechanism of evasive resistance to inhibition of the VEGF pathway is upregulation of other pro-angiogenic factors such as fibroblast growth factor (FGF) and epidermal growth factor (EGF). Numerous in vitro assays examine angiogenesis, but many of these assays are performed in media or matrix with multiple growth factors or are driven by VEGF. In order to study angiogenesis driven by other growth factors, we developed a basal medium to use on a co-culture cord formation system of adipose derived stem cells (ADSCs) and endothelial colony forming cells (ECFCs). We found that cord formation driven by different angiogenic factors led to unique phenotypes that could be differentiated and combination studies indicate dominant phenotypes elicited by some growth factors. VEGF-driven cords were highly covered by smooth muscle actin, and bFGF-driven cords had thicker nodes, while EGF-driven cords were highly branched. Multiparametric analysis indicated that when combined EGF has a dominant phenotype. In addition, because this assay system is run in minimal medium, potential proangiogenic molecules can be screened. Using this assay we identified an inhibitor that promoted cord formation, which was translated into in vivo tumor models. Together this study illustrates the unique roles of multiple anti-angiogenic agents, which may lead to improvements in therapeutic angiogenesis efforts and better rational for anti-angiogenic therapy.  相似文献   

15.
转化生长因子β1 (TGF-β1) 是参与骨髓间充质干细胞(BMSCs)脂肪定向分化的重要调节因子,其具体的调节机制尚不清楚. 本研究证明,BMSCs在体外分化为脂肪细胞的过程中, TGF-β1的基因表达显著下调,重组TGF-β1能够抑制BMSCs体外脂肪细胞定向分化,其分化的标志蛋白C/EBPβ和αP2的表达水平显著降低. TGF-β1在激活Smad信号通路的同时,还抑制胰岛素(脂肪分化的主要诱导剂)对PI3K/Akt信号通路的激活.加入Smad特异性阻断剂后,C/EBPβ和αP2的诱导表达恢复正常,同时PI3K/Akt信号通路的活化亦得以恢复. 结果提示,TGF-β1可通过Smad信号通路干扰脂肪细胞分化的核心信号通路-PI3K/Akt的活化,从而实现对BMSCs脂肪分化的抑制.该研究结果为肥胖等导致的心血管疾病或Ⅱ型糖尿病等的临床治疗提供有价值的参考.  相似文献   

16.
The aim of this study is to investigate the effect of evodiamine on fibroblast activation in cardiac fibroblasts and endothelial to mesenchymal transition (EndMT) in human umbilical vein endothelial cells (HUVECs). Neonatal rat cardiac fibroblasts were stimulated with transforming growth factor beta 1 (TGF-β1) to induce fibroblast activation. After co-cultured with evodiamine (5, 10 μM), the proliferation and pro-fibrotic proteins expression of cardiac fibroblasts were evaluated. HUVECs were also stimulated with TGF-β1 to induce EndMT and treated with evodiamine (5, 10 μM) at the same time. The EndMT response in the HUVECs was evaluated as well as the capacity of the transitioned endothelial cells migrating to surrounding tissue. As a result, Evodiamine-blunted TGF-β1 induced activation of cardiac fibroblast into myofibroblast as assessed by the decreased expressions of α-SMA. Furthermore, evodiamine reduced the increased protein expression of fibrosis markers in neonatal and adult rat cardiac fibroblasts induced by TGF-β1. HUVECs stimulated with TGF-β1 exhibited lower expression levels of CD31, CD34, and higher levels of α-SMA, vimentin than the control cells. This phenotype was eliminated in the HUVECs treated with both 5 and 10 μM evodiamine. Evodiamine significantly reduced the increase in migration ability that occurred in response to TGF-β1 in HUVECs. In addition, the activation of Smad2, Smad3, ERK1/2, and Akt, and the nuclear translocation of Smad4 in both cardiac fibroblasts and HUVEC were blocked by evodiamine treatment. Thus, evodiamine could prevent cardiac fibroblasts from activation into myofibroblast and protect HUVEC against EndMT. These effects may be mediated by inhibition of the TGFβ pathway in both cardiac fibroblasts and HUVECs.  相似文献   

17.
Ex vivo culture has been proposed as a means to augment and repair autologous cells in patients with chronic diseases, but the mechanisms governing improvement in cell function are not well understood. Although microRNAs (miRs) are increasingly appreciated as key regulators of cellular function, a role for these factors in CD34+ cell-mediated angiogenesis has not been elucidated. Vascular endothelial growth factor (VEGF) was previously shown to induce expression of certain miRs associated with angiogenesis in endothelial cells and promote survival and number of vascular colony forming units of haematopoietic stem cells (HSCs). We sought to evaluate the role of VEGF in expansion and angiogenic function of CD34+ cells and to identify specific miRs associated with angiogenic properties of expanded cells. Umbilical cord blood CD34+ cells were effectively expanded (18- to 22-fold) in culture medium containing stem cell factor (SCF), Flt-3 ligand (Flt-3), thrombopoietin (TPO) and interleukin-6 (IL-6) with (postEX/+VEGF) and without VEGF (postEX/noVEGF). Tube formation in matrigel assay and tissue perfusion/capillary density in mice ischaemic hindlimb were significantly improved by postEX/+VEGF cells compared with fresh CD34+ and postEX/noVEGF cells. MiR-210 expression was significantly up-regulated in postEX/+VEGF cells. MiR-210 inhibitor abrogated and 210 mimic recapitulated the pro-angiogenic effects by treatment of postEX/+VEGF and postEX/noVEGF cells respectively. Collectively, these observations highlight a critical role for VEGF in enhancing the angiogenic property of expanded cells, and identify miR-210 as a potential therapeutic target to enhance CD34+ stem cell function for the treatment of ischaemic vascular disease.  相似文献   

18.
Redox signaling in vascular angiogenesis   总被引:19,自引:0,他引:19  
Angiogenesis is thought to be regulated by several growth factors (EGF, TGF-alpha, beta-FGF, VEGF). Induction of these angiogenic factors is triggered by various stresses. For instance, tissue hypoxia exerts its pro-angiogenic action through various angiogenic factors, the most notable being vascular endothelial growth factor, which has been mainly associated with initiating the process of angiogenesis through the recruitment and proliferation of endothelial cells. Recently, reactive oxygen species (ROS) have been found to stimulate angiogenic response in the ischemic reperfused hearts. Short exposure to hypoxia/reoxygenation, either directly or indirectly, produces ROS that induce oxidative stress which is associated with angiogenesis or neovascularization. ROS can cause tissue injury in one hand and promote tissue repair in another hand by promoting angiogenesis. It thus appears that after causing injury to the cells, ROS promptly initiate the tissue repair process by triggering angiogenic response.  相似文献   

19.
Wang J  Wang J  Sun Y  Song W  Nor JE  Wang CY  Taichman RS 《Cellular signalling》2005,17(12):1578-1592
The establishment of metastatic bone lesions in prostate cancer (CaP) is a process partially dependent on angiogenesis. Previously we demonstrated that the stromal-derived factor-1 (SDF-1 or CXCL12)/CXCR4 chemokine axis is critical for CaP cell metastasis. In this investigation, cell lines were established in which CXCR4 expression was knocked down using siRNA technology. When CaP cells were co-transplanted with human vascular endothelial cells into SCID mice, significantly fewer human blood vessels were observed paralleling the reductions in CXCR4 levels. Likewise, the invasive behaviors of the CaP cells were inhibited in vitro. From these functional observations we explored angiogenic and signaling mechanisms generated following SDF-1 binding to CXCR4. Differential activation of the MEK/ERK and PI3K/AKT pathways that result in differential secretion IL-6, IL-8, TIMP-2 and VEGF were seen contingent on the cell type examined; VEGF and TIMP-2 expression in PC3 cells are dependent on AKT activation and ERK activation in LNCaP and LNCaP C4-2B cells leads to IL-6 or IL-8 secretion. At the same time, expression of angiostatin levels were inversely related to CXCR4 levels, and inhibited by SDF-1 stimulation. These data link the SDF-1/CXCR4 pathway to changes in angiogenic cytokines by different signaling mechanisms and, suggest that the delicate equilibrium between proangiogenic and antiangiogenic factors may be achieved by different signal transduction pathways to regulate the angiogenic phenotype of prostate cancers. Taken together, our results provide new information regarding expression of functional CXCR4 receptor-an essential role and potential mechanism of angiogenesis upon SDF-1 stimulation.  相似文献   

20.
It is known that VEGF receptors (VEGFR) and integrins interact with each other to regulate angiogenesis. We reported previously that the fasciclin 1 (FAS1) domain-containing protein, TGFBIp/βig-h3 (TGF-β-induced protein) is an angiogenesis regulator that inhibits both endothelial cell migration and growth via αvβ3 integrin. In an attempt to target the interaction between VEGFR-2 and αvβ3 integrin, we determined whether the FAS1 domain region of TGFBIp/βig-h3 (FAS1 domain protein) can block the interaction between the two receptors, leading to the suppression of angiogenesis. In this study, we showed that FAS1 domain protein inhibits VEGF(165)-induced endothelial cell proliferation and migration via αvβ3 integrin, resulting in the inhibition of VEGF(165)-induced angiogenesis. We also defined a molecular mechanism by which FAS1 domain protein blocks the association between αvβ3 integrin and VEGFR-2, showing that it binds to αvβ3 integrin but not to VEGFR-2. Blocking the association of these major angiogenic receptors with FAS1 domain protein inhibits signaling pathways downstream of VEGFR-2. Collectively, our results indicate that FAS1 domain protein, in addition to its inhibitory effect on αvβ3 integrin-mediated angiogenesis, also inhibits VEGF(165)-induced angiogenesis. Thus, FAS1 domain protein can be further developed into a potent anticancer drug that targets two principal angiogenic pathways. Mol Cancer Res; 10(8); 1010-20. ?2012 AACR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号