首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytochemical study of Orobanche cernua Loefling afforded 17 compounds, including eleven phenylpropanoid glycosides (111), two flavonoids (12, 13), one lignan (14), and three phenolic acids (1517) were isolated from the fresh whole plant of O. cernua. Their structures were identified by spectroscopic analyses and by comparison of their spectral data with those reported in the literature. This is the first report of isolation of compounds (6, 8, 9, 11, 1416) from O. cernua and compounds (14, 15) from the family Orobanchaceae, respectively. Compound 14 was obtained from natural source for the first time, the chemotaxonomic significance of these compounds was summarized.  相似文献   

2.
The phytochemical study of Piper pleiocarpum Chang ex Tseng led to the isolation of eighteen compounds (118), including ten lignanoids, galbelgin (1), (+) sesamin (2), denudatin A (3), hancinone (4), (7S,8S, 3′R)-Δ8'-3,3′,4-trimethoxy-3′,6′-dihydro-6′-oxo-7.0.4′,8.3′-lignan[(2S,3S,3aR)-2-(3,4-dimethoxyphenyl)-3,3a-dihydro-3a-methoxy-3-methyl-5-(2-propenyl)-6(2H))-benzofuranone] (5), (−)-(7R,8R)-machilin D (6), (1R,2R)-2-[2-methoxy-4-((E)-prop-1-enyl)phenoxy]-1-(3,4-dimethoxyphenyl)propyl acetate (7), piperbonin A (8), machilin D (9), 4-methoxymachilin D (10), one amide alkaloid, Δα,β-dihydropiperine (11), six polyoxygenated cyclohexenes, ent-curcuminol F (12), uvaribonol E (13), ellipeiopsol A (14), 1S,2R,3R,4S-1-ethoxy-2-[(benzoyloxy)methyl]cyclohex-5-ene-2,3,4-triol, 3-acetate (15), (+)-crotepoxide (16), (+)-senediol (17), and one benzoate derivative, 2-acetoxybenzyl benzoate (18). Their structures were established by spectroscopic data and by comparison with the literature. All the compounds were firstly isolated from P. pleiocarpum, while ten compounds 67, 910, 1215, 1718 were isolated from the genus Piper and the family Piperaceae for the first time. The chemotaxonomic significance of these compounds was also discussed. The isolation of compounds 67, 910 may be used as chemotaxonomic markers for the genus of Piper.  相似文献   

3.
The phytochemical study of the pericarps of Zanthoxylum bungeanum Maxim under the guidance of bioactivity led to the isolation of 18 compounds, including a new isobutylhydroxyamide (1) and 17 known compounds, i.e. six alkylamides (27), five coumarins (812), one benzene derivative (13), three flavonoids (1416), and two sterols (1718). Their structures were elucidated based on extensive spectroscopic methods (HRESIMS, 1D and 2D NMR experiments) and by comparison with literature data. New compound (1) and known compound (2) are cis-trans isomeric isobutylhydroxyamides. Among them, compounds 9, 10, and 12 were isolated for the first time from Z. bungeanum, compound 11 was firstly recovered from the genus Zanthoxylum, and compound 14 was reported for the first time from the Rutaceae family. The chemotaxonomic significance of isolated compounds from Z. bungeanum is discussed.  相似文献   

4.
Chemical study of Piper crocatum leaves has led to isolation of a new megastigmane glucoside isomer (18), along with 23 known compounds including fifteen phenolic compounds (115), two monoterpenes (16 and 17), three sesquiterpenes (1921), a phenolic amide glycoside (22), a neolignan (23), and a flavonoid C-glycoside (24). Structures of these compounds were identified via spectroscopic methods and compared with those reported in the literature. Seven compounds (7, 11, 13, 14, 17, 20, and 24) from the P. crocatum species and 17 others (16, 810, 12, 1516, 1819, and 2123) from the Piper genus and Piperaceae family were isolated and reported for the first time. Furthermore, this study discusses chemotaxonomic relations between P. crocatum and other Piper species.  相似文献   

5.
A chemical investigation of Dioscorea collettii led to the isolation of twenty-nine compounds, including six steroid saponins (16), thirteen monocyclic phenols (719), two flavonoids (2021), three sterols (2224), and five cyclodipeptides (2529). The chemical structures of these compounds were elucidated using spectroscopic methods and by comparing their data to that reported in the literature. This study is the first report of compounds 24, 7, 1417, 21, and 2324 in D. collettii, while compounds 813, 18–20, and 2529 were first isolated from the genus Dioscorea and the family Dioscoreaceae. The chemotaxonomic significance of the isolated compounds is discussed.  相似文献   

6.
Phytochemical investigation of the whole plants of Lagopsis supina (Steph.) Ik.-Gal. ex Knorr. led to the isolation of 18 compounds (118), including ten phenylethanoid glycosides (110), one phenylmethanoid glycoside (11), four megastigmane glycosides (1215), and three monoterpenoid glycosides (1618). Lagopsides A (1) and B (2) were identified as new phenylethanoid glycosides. This is the first report of compounds 7, 11, 12, 15, and 16 from the Labiatae family, while compounds 46, 810, 1314, and 1718 were isolated from the genus Lagopsis for the first time. The chemotaxonomic significance of these isolated compounds was summarized.  相似文献   

7.
The chemical investigation of whole plants Piper boehmeriifolium (Miq.) Wall. ex C. DC. led to the isolation of 22 compounds, including two lignans (12), sixteen amide alkaloids (318), one diterpene (19), two monoterpenes (2021), and one phenylpropanoid (22). Their structures were elucidated by extensive spectroscopic analyses including NMR, MS, and by comparison with the literature. Compounds 12, 67, 1112, 14, and 1722 were firstly isolated from P. boehmeriifolium, while compounds 2, and 1920 were isolated from Piper genus for the first time. The chemotaxonomic significance of these isolated compounds is discussed.  相似文献   

8.
Eighteen compounds, including four hemiterpene glycosides (14), three triterpenoid saponins (57), four triterpenes (811), five sterols (12-16) and two monoterpene glucosides (17 and 18), were isolated from the leaves of Ilex urceolatus C. B. Shang, K. S. Tang et D. Q. Du, which was identified as a new species belonging to the genus Ilex. Among them, compounds 1418 were firstly isolated from the genus Ilex, others were obtained from I. urceolatus for the first time. This work represented the initially phytochemical study on this plant. The isolated compounds have significant chemotaxonomic characteristics with the other species from this genus.  相似文献   

9.
A systematic phytochemical investigation of Pteris wallichiana J. Agardh resulted in the isolation of twenty compounds, including five sesquiterpenes (15), six flavonoids (611), seven phenolic acids (1218) and two fatty acids (19 and 20). Their structures were deduced from MS, NMR and ORD data. This is the first report of compounds dehydropterosin B (2), (2R,3S)-pterosin C (4), (2R,3R)-pterosin L (5), apigenin (6), luteolin (7), luteolin-7-O-glucoside (10), caffeic acid (13), vanillin (14), 3,4-dihydroxybenzaldehyde (15), chlorogenic acid (17), 3,5-dicaffeoylquinic acid (18), suberic acid (19) and azelaic acid (20) from P. wallichiana and of compounds 15, 19 and 20 from the family Pteridaceae. Furthermore, a chemotaxonomic study of the isolates was performed.  相似文献   

10.
The comprehensive phytochemical research of Lethariella cladonioides (Nyl.) Krog, (Parmeliaceae), a lichen in southwest China, resulted in isolation of eighteen compounds (118), including a new phenolic acid 3,5-dihydroxy-4-methylbenzaldehyde (1) and seventeen known compounds, nine phenolic acids (210), one dibenzofuran (11), two depsides (12 and 13), one alkane (14), one glucoside (15), two polyols (16 and 17), and one fatty acid (18). The structures of these compounds were assigned by detailed interpretations of spectroscopic data (1D and 2D NMR, HR-ESI-MS) and comparisons with the published data. Among them, 3,5-dihydroxy-4-methylbenzaldehyde (1) is a new one. (−)-hydroxypropan-2′,3′-diol-orsellinate (10) have not been reported from any species in the lichens. Compounds 6, 7, 9, 12, 14, 16 and 18 were firstly isolated from the genus Lethariella (Motyka) Krog. Compounds 2, 6, 7, 9, 10, 12, 14, 16 and 18 were reported from L. cladonioides firstly. The chemotaxonomic significance of these compounds was also discussed.  相似文献   

11.
Phytochemical investigation of the aerial parts of Eremostachys moluccelloides Bunge led to the identification of a new diterpene, 2β,14-dihydroxy −11-formyl- 12-carboxy-13-des-isopropyl-13-hydroxymethyl-abieta-8,11,13- triene- 16(17)- lactone (1), along with the known compounds 12, 18-dicarboxy-14-hydroxy-13-des -isopropyl-13-hydroxymethyl- abieta-8,11,13-triene-16(17)-lactone (2), 5-hydroxy-3′,4′,7-trimethoxyflavone (3), 5-hydroxy-4’,7-dimethoxyflavone (4), luteolin-7-O-β-glucoside (5), verbascoside (6), luteolin 7-O-(6″-O-β-D-apiofuranosyl) -β-D-glucopyranoside (7), chlorogenic acid (8), echinacoside (9), apigenin-7-O-β-D-glucoside (10), p-coumaric acid (11), vanillic acid (12), apigenin-7-O-(6″-E-p-coumaroyl)-β-D-glucopyranoside (13), apigenin-7-O-(3″,6″-E-p-dicoumaroyl)-β-glucoside (14), lamalbide (15), 6β-hydroxy-7-epi-loganin (16), phloyoside II (17) The structures were elucidated on the basis of 1D and 2D NMR spectroscopy, UV, MS and by comparison with compounds previously reported in the literature. Compounds 14, 8, 9, 11, 12, 14 have not been reported previously from any species within the genus Eremostachys. Compounds 114, 17 were obtained from this species for the first time. The chemotaxonomic significance of the isolated compounds is discussed.  相似文献   

12.
This work describes the isolation and characterization of twenty-nine compounds from the fruits of Rhus typhina L., including eleven flavonoids (1–11), eleven phenols (12–22), two pentacyclic triterpenes (23–24), two organic acids (25–26), one lumichrome (27), one courmarin (28) and one pyrimidine (29) on the basis of their spectroscopic data. Compounds apigenin (1), daidzein (4), orobol (5), 3′, 5, 5′, 7-tetrahydroxyflavanone (6), naringenin (7), butein (8), (-)-catechin (9), quercetin-3-O-α-L-(3″-O-galloyl)-rhamnoside (11), 2-hydroxybenzoic acid (13), 4-hydroxybenzaldehyde (14), vanillin (15), methyl 3,4-dihydroxybenzoate (16), 3,5-dihydroxybenzamide (18), tyrosol (19), caffeic acid (20), 3-(2,4,6-trihydroxyphenyl)-1-(4-hydroxyphenyl)-propan-1-one (21), phlorizin (22), friedelin (23), oleanolic acid (24), 4,4-dimethyl-heptanedioic acid (25), anthranilic acid (26), lumichrome (27), scoparone (28) and uracil (29) have not been recorded before in this plant. This is the first report on the occurrence of compounds 4–7, 9, 11, 13–14, 16, 18–21, 25–29 from the genus Rhus. Moreover, the chemotaxonomic significance of these isolated compounds was also summarized.  相似文献   

13.
A phytochemical investigation on the twigs and leaves of Kopsia hainanensis Tsiang resulted in the isolation and identification of 18 alkaloids, including two sarpagine type alkaloids (1 and 2), five eburnane type alkaloids (37), three aspidofractinine type alkaloids (810), one vincadine type alkaloid (11), three akuammiline type alkaloids (1213 and 15), one corynanthean type alkaloid (14), two ajmalicine-like type alkaloids (16 and 17), and one aspidospermine type alkaloid (18). The new structure of compound 1 was elucidated by means of spectroscopic analysis, including HRESIMS, and 1D and 2D NMR experiments. Compounds 12, 45, 7, and 1017 are herein reported for the first time from this plant, while the compounds 1, 2, 7, and 1217 have not been previously recorded in the Kopsia genus. The chemotaxonomic significance and distribution of these monoterpenoid indole alkaloids in Kopsia genus are discussed.  相似文献   

14.
A phytochemical study of chloroform-methanol and methanol extracts of Joannesia princeps Vell. Leaves led to the isolation of twenty eight compounds, including two α-ionones (2, 5), three glycosylated monoterpenes (1, 3, 4), eight phenolic compounds (6, 8, 9, 12, 14, 17, 18, 24), two gallotannins (10, 11), twelve flavonoids (7, 15, 16, 19, 2023, 2528), and one lignan (13). The structural characterization of the isolated compounds was performed by spectroscopic data and comparison with the literature. All compounds were isolated from this species and from the genus Joannesia for the first time. The chemotaxonomic importance of these metabolites is therefore summarized.  相似文献   

15.
Seven compounds, including three labdane diterpenes (1, 4, 6), one bisnorlabdane diterpene (2), one steroid (3), one sesquiterpene (5) and one kawalactone (7) were isolated from the rhizomes of Amomum uliginosum J.Koenig. Compounds 14, 6 and 7 were firstly isolated from the genus Amomum. This work represented the first phytochemical study on this plant. The chemotaxonomic significance of these compounds was summarized.  相似文献   

16.
Eighteen compounds were isolated from the stem and root bark of Daphne giraldii Nitsche, including three categories: flavans (16), diphenylpropanes (712), and lignans (1318). This is the first report on the occurrence of compounds 9, 11, 1315, and 1718 in D. giraldii. These compounds were elucidated using spectroscopic methods and by comparing their data to those reported in the literature. On the basis of our previous chemical research, the chemotaxonomic significance of the isolated compounds was discussed to a greater degree.  相似文献   

17.
Twenty-four compounds were obtained from the extract of the leaves of I. urceolatus, which were divided into saturated fatty alcohols (1 and 2), triterpenoids (38 and 1416), lignanoids (9, 20 and 22), coumarins (10 and 19), flavonoids (1113, 21, 23 and 24) and others (17 and 18). Among them, compounds 1, 2, 17 and 18 were firstly obtained from the genus Ilex, others were isolated from this species for the first time. The chemotaxonomic relationships between I. urceolatus and other species of genus Ilex were also discussed. As a result, the isolated compounds closely matched the ones obtained in other species of the genus.  相似文献   

18.
Phytochemical research of the roots of Juglans mandshurica Maxim. (Juglandaceae) verified 37 secondary metabolites, including thirteen diarylheptanoids (113), five naphthoquinones (1418), five tetralones (1923), three lignans (2426), three phenols (2729), two anthraquinones (3031), two triterpenoids (3233), two secoiridoids (3435), one naphthalenyl glycoside (36), and one flavonoid (37). The chemical structures of these constituents were elucidated by NMR spectroscopy and compared with data from the literature. This is the first confirmation of the presence of ten compounds (6, 12, 16, 18, 2426, 30, 3233) isolated from the family Juglandaceae, two compounds (1 and 8) from the genus Juglans, and four compounds (27, 31, 3435) from J. mandshurica. The isolation and chemotaxonomic significance of the metabolites from the roots of J. mandshurica were described in this study.  相似文献   

19.
A new sesquiterpenoid, 1α,4β,8β,9β-eudesmane-tetrol-1-O-β-D-glucopyranoside (1), together with nine known compounds (210), were isolated from Merremia yunnanensis. The structures of these compounds were elucidated by spectroscopic methods and compared to data in the literature. All these compounds (110) were firstly isolated from this plant, and compounds 3, 5, 7, and 10 were reported from the Merremia genus for the first time. The significance of the chemotaxonomy for these compounds is described herein.  相似文献   

20.
Chemical study of the whole plant of Leucas zeylanica (L.) B. Br. has led to isolation of a new norditerpenoid isomer (1), along with 29 known compounds, including one norditerpenoid (2), three flavonoid glycosides (35), six flavonoids (611), two phytosterols (1213), two phenylpropanoids (14, 19), two phthalate esters (15, 16), two phenolic compounds (17, 18), five terpenoids (2024), one aliphatic glycoside (25), one nucleobase (26), one amino acid (27), two alkaloids (2829), and one cytochalasin (30). The structures of these compounds were identified using NMR spectroscopic methods and comparing them with those previously reported. Twelve compounds (6, 15, 1720, 22, 23, 2629) were isolated for the first time from Leucas zeylanica and ten others (2, 4, 5, 7, 14, 16, 21, 24, 25, 30) from the Leucas genus. This study also discusses the chemotaxonomic relationships between Leucas zeylanica and other species of Leucas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号