首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Breast cancer is the most common female cancer and the second most common cause of female cancer-related deaths in the United States. World-wide, more than one million women will be diagnosed with breast cancer annually. In 2007, more than 175,000 women were diagnosed with breast cancer in the United States. However, deaths due to breast cancer have decreased in the recent years in part because of improved screening techniques, surgical interventions, understanding of the pathogenesis of the disease, and utilization of traditional chemotherapies in a more efficacious manner. One of the more exciting areas of improvement in the treatment of breast cancer is the entrance of novel therapies now available to oncologists. In the field of cancer therapeutics, the area of targeted and biologic therapies has been progressing at a rapid rate, particularly in the treatment of breast cancer. Since the advent of imatinib for the successful treatment of chronic myelogenous leukemia in the 2001, clinicians have been searching for comparable therapies that could be as efficacious and as tolerable. In order for targeted therapies to be effective, the agent must be able to inhibit critical regulatory pathways which promote tumor cell growth and proliferation. The targets must be identifiable, quantifiable and capable of being interrupted. In the field of breast cancer, two advances in targeted therapy have led to great strides in the understanding and treatment of breast cancer, namely hormonal therapy for estrogen positive receptor breast cancer and antibodies directed towards the inhibition of human epidermal growth factor receptor (HER)2. These advances have revolutionized the understanding and the treatment strategies for breast cancer. Building upon these successes, a host of novel agents are currently being investigated and used in clinical trials that will hopefully prove to be as fruitful. This review will focus on novel therapies in the field of breast cancer with a focus on metastatic breast cancer (MBC) and updates from the recent annual ASCO meeting and contains a summary of the results.  相似文献   

2.
Expression of estrogen and progesterone hormone receptors indicates a favorable prognosis due to the successful use of hormonal therapies such as tamoxifen and aromatase inhibitors. Unfortunately, 15–20% of patients will experience breast cancer recurrence despite continued use of tamoxifen. Drug resistance to hormonal therapies is of great clinical concern so it is imperative to identify novel molecular factors that contribute to tumorigenesis in hormone receptor positive cancers and/or mediate drug sensitivity. The hope is that targeted therapies, in combination with hormonal therapies, will improve survival and prevent recurrence. We have previously shown that the DEK oncogene, which is a chromatin remodeling protein, supports breast cancer cell proliferation, invasion and the maintenance of the breast cancer stem cell population. In this report, we demonstrate that DEK expression is associated with positive hormone receptor status in primary breast cancers and is up-regulated in vitro following exposure to the hormones estrogen, progesterone, and androgen. Chromatin immunoprecipitation experiments identify DEK as a novel estrogen receptor α (ERα) target gene whose expression promotes estrogen-induced proliferation. Finally, we report for the first time that DEK depletion enhances tamoxifen-induced cell death in ER+ breast cancer cell lines. Together, our data suggest that DEK promotes the pathogenesis of ER+ breast cancer and that the targeted inhibition of DEK may enhance the efficacy of conventional hormone therapies.  相似文献   

3.
Breast cancer, like many other cancers, is believed to be driven by a population of cells that display stem cell properties. Recent studies suggest that cancer stem cells (CSCs) are essential for tumor progression, and tumor relapse is thought to be caused by the presence of these cells. CSC-targeted therapies have also been proposed to overcome therapeutic resistance in breast cancer after the traditional therapies. Additionally, the metabolic properties of cancer cells differ markedly from those of normal cells. The efficacy of metabolic targeted therapy has been shown to enhance anti-cancer treatment or overcome therapeutic resistance of breast cancer cells. Metabolic targeting of breast CSCs (BCSCs) may be a very effective strategy for anti-cancer treatment of breast cancer cells. Thus, in this review, we focus on discussing the studies involving metabolism and targeted therapy in BCSCs.  相似文献   

4.
Breast cancer is the most common cause of cancer death in women and presents a serious therapeutic challenge worldwide. Traditional treatments are less successful at targeting cancer tumors, leading to recurrent treatment-resistant secondary malignancies. Oncolytic virotherapy (OV) is a novel anticancer strategy with therapeutic implications at targeting cancer cells by using mechanisms that differ from conventional therapies. Administration of OVs either alone or in combination with standard therapies provide new insights regarding the effectiveness and improvement of treatment responses for breast cancer patients. This review summarizes cellular, animal and clinical studies investigating therapeutic potency of oncolytic virotherapy in breast cancer treatment for a better understanding and hence a better management of this disease.  相似文献   

5.
Chemotherapy resistance is a major obstacle to achieving durable progression-free-survival in breast cancer patients. Identifying resistance mechanisms is crucial to the development of effective breast cancer therapies. Immediate early genes (IEGs) function in the initial cellular reprogramming response to alterations in the extracellular environment and IEGs have been implicated in cancer cell development and progression. The purpose of this study was to investigate the influence of kinase inhibitors on IEG expression in breast cancer cells. The results demonstrated that Flavopiridol (FP), a CDK9 inhibitor, effectively reduced gene expression. FP treatment, however, consistently produced a delayed induction of JUNB gene expression in multiple breast cancer cell lines. Similar results were obtained with Sorafenib, a multi-kinase inhibitor and U0126, a MEK1 inhibitor. Functional studies revealed that JUNB plays a pro-survival role in kinase inhibitor treated breast cancer cells. These results demonstrate a unique induction of JUNB in response to kinase inhibitor therapies that may be among the earliest events in the progression to treatment resistance.  相似文献   

6.
Effective breast cancer management and decreasing breast cancer fatalities is contingent upon reliable diagnostic procedures and treatment modalities, including those based on ionizing radiation. On the one hand, ionizing radiation is widely used for cancer diagnostics and therapy, on the other hand it is genotoxic cancer-causing agent. Here we discuss recent studies on the effects of low (diagnostic) and high (treatment) doses of ionizing radiation on healthy breast cells, breast cancer cells, and cancer cells resistant to common drug therapies.  相似文献   

7.
Targeted therapies based on biomarker profiling are becoming a mainstream direction of cancer research and treatment. Depending on the expression of specific prognostic biomarkers, targeted therapies assign different cancer drugs to subgroups of patients even if they are diagnosed with the same type of cancer by traditional means, such as tumor location. For example, Herceptin is only indicated for the subgroup of patients with HER2+ breast cancer, but not other types of breast cancer. However, subgroups like HER2+ breast cancer with effective targeted therapies are rare, and most cancer drugs are still being applied to large patient populations that include many patients who might not respond or benefit. Also, the response to targeted agents in humans is usually unpredictable. To address these issues, we propose subgroup-based adaptive (SUBA), designs that simultaneously search for prognostic subgroups and allocate patients adaptively to the best subgroup-specific treatments throughout the course of the trial. The main features of SUBA include the continuous reclassification of patient subgroups based on a random partition model and the adaptive allocation of patients to the best treatment arm based on posterior predictive probabilities. We compare the SUBA design with three alternative designs including equal randomization, outcome-adaptive randomization, and a design based on a probit regression. In simulation studies, we find that SUBA compares favorably against the alternatives.  相似文献   

8.
9.
Development and preclinical testing of new cancer therapies is limited by the scarcity of in vivo models that authentically reproduce tumor growth and metastatic progression. We report new models for breast tumor growth and metastasis in the form of transplantable tumors derived directly from individuals undergoing treatment for breast cancer. These tumor grafts illustrate the diversity of human breast cancer and maintain essential features of the original tumors, including metastasis to specific sites. Co-engraftment of primary human mesenchymal stem cells maintains phenotypic stability of the grafts and increases tumor growth by promoting angiogenesis. We also report that tumor engraftment is a prognostic indicator of disease outcome for women with newly diagnosed breast cancer; orthotopic breast tumor grafting is a step toward individualized models for tumor growth, metastasis and prognosis. This bank of tumor grafts also serves as a publicly available resource for new models in which to study the biology of breast cancer.  相似文献   

10.
The HER-2/neu oncogene, a member of the epidermal growth factor receptor or erb gene family, encodes a transmembrane tyrosine kinase receptor that has been linked to prognosis and response to therapy with the anti-HER-2-humanized monoclonal antibody, trastuzumab (Herceptin, Genentech, South San Francisco, CA) in patients with advanced metastatic breast cancer. HER-2/neu status has also been tested for its ability to predict the response of breast cancer to other therapies including hormonal therapies, topoisomerase inhibitors, and anthracyclines. This review includes an analysis of 80 published studies encompassing more than 25,000 patients designed to consider the relative advantages and disadvantages of the various methods of measuring HER-2/neu in clinical breast cancer specimens. Southern blotting, PCR amplification detection, and fluorescence in situ hybridization assays designed to detect HER-2/neu gene amplification are compared with HER-2/neu protein overexpression assays performed by immunohistochemical techniques applied to frozen and paraffin-embedded tissues and enzyme immunoassays performed on tumor cytosols. The significance of HER-2/neu overexpression in ductal carcinoma in situ and the HER-2/neu status in uncommon female breast conditions and male breast cancer are also considered. The role of HER-2/neu testing for the prediction of response to trastuzumab therapy in breast cancer is reviewed along with the current studies designed to test whether HER-2/neu status can predict the response to standard and newer hormonal therapies, cytotoxic chemotherapy, and radiation. The review will also evaluate the status of serum-based testing for circulating HER-2/neu receptor protein and its ability to predict disease outcome and therapy response.  相似文献   

11.
12.
Carcinoma of the breast is the most common cancer in u.s. women (excluding skin cancer), and the second leading cause of cancer-related mortality. In 2004, it is estimated that 215,000 u.s. women will develop invasive breast cancer, and 40,000 women will die of the disease. Advancing age and female sex are the two greatest risk factors for the development of breast cancer, although family history, reproductive and hormonal history, lifestyle and environmental factors all contribute to risk. Models are available to help estimate risk of developing breast cancer in individual patients. Inherited mutations, specifically in the genes BRCA1 and BRCA2, account for approximately 5–10% of all breast cancer cases. Significant advances have recently been made in both the primary prevention of breast cancer (including chemoprevention), and secondary prevention (early detection through breast imaging). Breast mri as a tool for screening high risk women is a particularly exciting new tool.When breast cancer is diagnosed, optimal treatment involves a multidisciplinary approach, including surgery, radiation therapy, and systemic therapies. In the field of breast surgery, breast conservation and sentinel lymph node biopsy techniques have allowed substantially decreased surgery in appropriated selected patients with corresponding decreases in complication rates and long-term sequelae. Radiation oncologists are comparing partial breast irradiation versus conventional whole breast radiation in an attempt to minimize toxicity and treatment time, and maximize efficacy. The field of breast medical oncology has evolved at a rapid pace in the past decade, with numerous new hormonal agents, chemotherapeutic agents, and biologically targeted therapies in clinical use and under investigation. The addition of ‘adjuvant’ systemic therapy to the treatment of early stage breast cancer patients has dramatically reduced relapse and death rates. Unfortunately, metastatic recurrence still occurs. Once the cancer has spread beyond the breast and locoregional nodal areas it is felt to be incurable, although still treatable. A better understanding of breast cancer biology has led to the development of a host of new biologically targeted agents, many of which hold substantial promise for improving quality of life and survival rates in metastatic breast cancer patients.  相似文献   

13.
14.
Preventing clinical progression is the major treatment goal for both early and advanced breast cancer. For hormone-responsive cases (about 70% of the total), this can necessitate the use of sequential hormone therapies at various points during the patient's life. Newer hormonal therapies, such as the third-generation aromatase inhibitor anastrozole, are now competing with tamoxifen as first choice endocrine therapy in breast cancer. In addition, a further non-steroidal aromatase inhibitor letrozole has been shown to be beneficial when given at completion of 5 years adjuvant tamoxifen. In light of these new data, current treatment paradigms need to be reviewed. Already well established as second-line treatments for advanced breast cancer, the improved risk:benefit profiles of anastrozole and letrozole compared with tamoxifen mean that these agents are now also recognised alternative treatments in the first-line relapse setting. More recent studies demonstrate that anastrozole may also have an improved risk:benefit profile compared with tamoxifen when used as initial adjuvant therapy in early breast cancer. Anastrozole is also being evaluated as a preventative treatment in women at high risk of developing breast cancer. A new addition to the endocrine treatment armamentarium is the oestrogen receptor antagonist fulvestrant, which, unlike tamoxifen, has no agonist effects. Fulvestrant is at least as effective as anastrozole in the second-line treatment of advanced breast cancer, and provides similar benefits to tamoxifen when used as first-line therapy in patients with advanced, hormone receptor-positive tumours.  相似文献   

15.

Background

There is extensive epidemiological evidence that menopausal hormone therapy (MHT) increases breast cancer risk, particularly combinations of estrogen and progestagen (EP). We investigated the effects of the specific formulations and types of therapies used by French women. Progestagen constituents, regimen (continuous or sequential treatment by the progestagen), and time interval between onset of menopause and start of MHT were examined.

Methods

We conducted a population-based case-control study in France in 1555 menopausal women (739 cases and 816 controls). Detailed information on MHT use was obtained during in-person interviews. Odds ratios and 95% confidence interval adjusted for breast cancer risk factors were calculated.

Results

We found that breast cancer risk differed by type of progestagen among current users of EP therapies. No increased risk was apparent among EP therapy users treated with natural micronized progesterone. Among users of EP therapy containing a synthetic progestin, the odds ratio was 1.57 (0.99-2.49) for progesterone-derived and 3.35 (1.07-10.4) for testosterone-derived progestagen. Women with continuous regimen were at greater risk than women treated sequentially, but regimen and type of progestagen could not be investigated independently, as almost all EP combinations containing a testosterone-derivative were administered continuously and vice-versa. Tibolone was also associated with an increased risk of breast cancer. Early users of MHT after onset of menopause were at greater risk than users who delayed treatment.

Conclusion

This study confirms differential effects on breast cancer risk of progestagens and regimens specifically used in France. Formulation of EP therapies containing natural progesterone, frequently prescribed in France, was not associated with increased risk of breast cancer but may poorly protect against endometrial cancer.  相似文献   

16.
Recent evidence suggests that most malignancies are driven by “cancer stem cells” sharing the signature characteristics of adult stem cells: the ability to self renew and to differentiate. Furthermore these cells are thought to be quiescent, infrequently dividing cells with a natural resistance to chemotherapeutic agents. These studies theorize that therapies, which effectively treat the majority of tumor cells but ‘miss’ the stem cell population, will fail, while therapies directed at stern cells can potentially eradicate tumors. In breast cancer, researchers have isolated ‘breast cancer stem cells’ capable of recreating the tumor in vivo and in vitro. Generated new tumors contained both additional numbers of cancer stem cells and diverse mixed populations of cells present in the initial tumor, supporting the intriguing self‐renewal and differentiation characteristics. In the present study, an antibody phage library has been used to search for phage displayed‐single chain antibodies (scFv) with selective affinity to specific targets on breast cancer stem cells. We demonstrate evidence of two clones binding specifically to a cancer stem cell population isolated from the SUMl59 breast cancer cell line. These clones had selective affinity for cancer stem cells and they were able to select cancer stem cells among a large population of non‐stem cancer cells in paraffin‐embedded sections. The applicability of these clones to paraffin sections and frozen tissue specimens made them good candidates to be used as diagnostic and prognostic markers in breast cancer patient samples taking into consideration the cancer stern cell concept in tumor biology. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

17.
牛畅  叶棋浓 《生物技术通讯》2010,21(5):731-735,739
肿瘤干细胞既包含干细胞的特性也包含肿瘤细胞的特性。乳腺癌起源于乳腺癌干细胞的说法能够合理地解释乳腺癌的不均一性及其治疗后的复发,这些变异的干细胞可能作为肿瘤预防策略的靶标。而且,由于乳腺癌干细胞能够抵抗辐射治疗和化学治疗,所以要想更好地治疗乳腺癌就需要寻找针对这些干细胞的靶标。我们综述了乳腺癌干细胞的发现、富集和分离、相关的信号途径,以及在乳腺癌治疗中的应用。  相似文献   

18.
Glycosylation is one of the most fundamental posttranslational modifications in cellular biology and has been shown to be epigenetically regulated. Understanding this process is important as epigenetic therapies such as those using DNA methyltransferase inhibitors are undergoing clinical trials for the treatment of ovarian and breast cancer. Previous work has demonstrated that altered glycosylation patterns are associated with aggressive disease in women presenting with breast and ovarian cancer. Moreover, the tumor microenvironment of hypoxia results in globally altered DNA methylation and is associated with aggressive cancer phenotypes and chemo-resistance, a feature integral to many cancers. There is sparse knowledge on the impact of these therapies on glycosylation. Moreover, little is known about the efficacy of DNA methyltransferase inhibitors in hypoxic tumors. In this review, we interrogate the impact that hypoxia and epigenetic regulation has on cancer cell glycosylation in relation to resultant tumor cell aggressiveness and chemo-resistance.  相似文献   

19.
Globally, breast cancer is the most common type of cancer in females and is one of the leading causes of cancer death in women. The advancement in the targeted therapies and the slight understanding of the molecular cascades of the disease have led to small improvement in the rate of survival of breast cancer patients. However, metastasis and resistance to the current drugs still remain as challenges in the management of breast cancer patients. Metastasis, potentially, leads to failure of the available treatment, and thereby, makes the research on metastatic suppressors a high priority. Tumor metastasis suppressors are several genes and their protein products that have the capability of arresting the metastatic process without affecting the tumor formation. The metastasis suppressors KAI1 (also known as CD82) has been found to inhibit tumor metastasis in various types of solid cancers, including breast cancer. KAI1 was identified as a metastasis suppressor that inhibits the process of metastasis by regulating several mechanisms, including cell motility and invasion, induction of cell senescence, cell–cell adhesion and apoptosis. KAI1 is a member of tetraspanin membrane protein family. It interacts with other tetraspanins, chemokines and integrins to control diverse signaling pathways, which are crucial for protein trafficking and intracellular communication. It follows that better understanding of the molecular events of such genes is needed to develop prognostic biomarkers, and to identify specific therapies for breast cancer patients. This review aims to discuss the role of KAI1/CD82 as a prognosticator in breast cancer.  相似文献   

20.
HMGB1 is a member of highly conserved high mobility group protein superfamily with intracellular and extracellular distribution. Abnormal HMGB1 levels are frequently manifested in various malignant diseases, including breast cancer. Numerous studies have revealed the clinical value of HMGB1 in the diagnosis and therapy of breast cancer. However, the dual function of pro- and anti-tumor makes HMGB1 in cancer progression requires more profound understanding. This review summarizes the functions and mechanisms of HMGB1 on regulating breast cancer, including autophagy, immunogenic cell death, and interaction with the tumor microenvironment. These functions determine the strategies for the development of chemotherapy, radiotherapy, immunotherapy and combination therapies by targeting HMGB1 in breast cancer. Defining the mechanisms of HMGB1 on regulating breast cancer development and progression will facilitate the application of HMGB1 as a therapeutic target for breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号