首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The modification of the human placenta DNA polymerase alpha by the imidazolides of dNMP was investigated. The modification was shown to occur only in the simultaneous presence of the template and the primer. This process, however, doesn't depend on the complementary interaction of the nucleotide base with the template. The Kd values of the complexes between the different nucleotides and DNA polymerase alpha were estimated. The affinity of Im-dTMP was determined from the dependence of the Kapp of the enzyme inactivation rate on the reagent concentration. The Kd values for dNMP, dNDP, dNTP were estimated using the protective effect of these nucleotides under the enzyme modification by Im-dTMP. The comparison of the interaction efficiency between the polymerase and dNMP, dNDP, dNTP (complementary or non-complementary to the template) allow to conclude that the nucleotide discrimination occurs on the dNTP level, i. e. dNMP and dNDP upon forming the complex with the enzyme, don't interact complementarily with the template. The additional contacts between the enzyme and the nucleotide terminal phosphate were supposed to form only for the complementary dNTP. The studies allowed to put forward a hypothetical model of the template complementary dNTP binding to the polymerases. The role of the hydrophobic interaction of the nucleotides with the enzyme as well as the possible influence of the nucleotide gamma-phosphate group on the template--dNTP complement formation. The Watson-Crick bound formation of the nucleotide with the template was supposed to be followed by the additional conformational rearrangement of the nucleotide triphosphate chain. The latter process leads to the formation of additional contacts between the enzyme and the nucleotide gamma-phosphate.  相似文献   

2.
The interaction of deoxyribonucleoside 5'-mono-, di- and triphosphates with human placenta DNA polymerase alpha was examined. Dissociation constants of enzyme complex formation with dNMP, dNDP and dNTP were determined from the data on enzyme affinity modification by imidazolide of dTMP. The basic role of the primary template-primer interaction with the enzyme in dNTP complex formation is shown. The template-dependent nucleotide interaction does not occur in the case of dNMP and dNDP in comparison with dNTP. The significant contribution of the gamma-phosphate of dNTP in this process is demonstrated.  相似文献   

3.
A new method of estimation of dissociation constants for ligands and free energies of its binding based on the affinity modification of active centers in the presence of competitive ligands was developed. This method is designed for the analysis of protein-nucleic acid interactions in template systems. Deoxyoligoribonucleotides containing the reactive residue of cis-aquadihydroxydiaminoplatinum (II) and oligonucleotides ethylated at phosphate groups were used for the study of interactions of human placental DNA-polymerase alpha and the Klenow fragment of DNA-polymerase I from E. coli with templates and primers. A model was constructed which postulates the formation of a single Me2+-dependent electrostatic bond and of a hydrogen bond by one of template phosphates with the enzyme active center. Similar bonds form the basis for the enzyme interaction with the 3'-terminal phosphate group of the primer. Other monomeric units of the template are likely to interact with the enzyme by forming hydrophobic bonds. Other mononucleotide units of the primer are involved in complementary interactions with the template. The primer activity of dNMP and NMP in these systems has been demonstrated for the first time. The efficiency of dNMP, dNDP and dNTP interaction with DNA-polymerase was estimated from the affinity modification of the enzymes by dNTP and dNMP imidazolides. The key role of the template-primer interaction in the formation of the dNTP-binding site of DNA-polymerases was demonstrated. A significant contribution of dNTP gamma-phosphate to the template--dependent specific tuning of substrate dNTP was revealed.  相似文献   

4.
AMP and NaF each taken separately were shown to activate DNA polymerization catalyzed by Klenow fragment of DNA polymerase I by means of interaction of AMP or NaF with 3'----5'-exonuclease center of the enzyme. In the presence of NaF which is a selective inhibitor of 3'----5'-exonuclease center, AMP is an inhibitor of polymerization competitive with respect to dATP. Ki values and the pattern of inhibition with respect to dATP were determined for AMP, ADP, ATP, carboxymethylphosphonyl-5'-AMP, Pi, PPi, PPPi, methylenediphosphonic acid and its ethylated esters, phosphonoformic acid, phosphonoacetic acid and its ethylated esters as well as for some bicarbonic acids in the reactions of DNA polymerization catalyzed by Klenow fragment of DNA polymerase I (in the presence of NaF) and DNA polymerase alpha from human placenta in the presence of poly(dT) template and r(pA)10 primer. All nucleotides and their analogs were found to be capable of competing with dATP for the active center of the enzyme. Most of the analogs of PPi and phosphonoacetic acid are inhibitors of Klenow fragment competitive with respect to dATP. Nowever these analogs display a mixed-type inhibition in the case of human DNA polymerase alpha. We postulated a similar mechanism of interaction for dNTP with both DNA-polymerases. It is suggested that each phosphate group of PPi makes equal contribution to the interaction with DNA polymerases and that the distance between the phosphate groups is important for this interaction. beta-phosphate of NTP or dNTP is suggested to make negligible contribution to the efficiency of the formation of enzyme complexes with dNTP. beta-phosphate is likely to be an essential point of PPi interaction with the active center of proteins during the cleavage of the alpha-beta-phosphodiester bond of dNTP in the reaction of DNA polymerization.  相似文献   

5.
Complexes formed between DNA polymerase and genomic DNA at the replication fork are key elements of the replication machinery. We used sedimentation velocity, fluorescence anisotropy, and surface plasmon resonance to measure the binding interactions between bacteriophage T4 DNA polymerase (gp43) and various model DNA constructs. These results provide quantitative insight into how this replication polymerase performs template-directed 5' --> 3' DNA synthesis and how this function is coordinated with the activities of the other proteins of the replication complex. We find that short (single- and double-stranded) DNA molecules bind a single gp43 polymerase in a nonspecific (overlap) binding mode with moderate affinity (Kd approximately 150 nm) and a binding site size of approximately 10 nucleotides for single-stranded DNA and approximately 13 bp for double-stranded DNA. In contrast, gp43 binds in a site-specific (nonoverlap) mode and significantly more tightly (Kd approximately 5 nm) to DNA constructs carrying a primer-template junction, with the polymerase covering approximately 5 nucleotides downstream and approximately 6-7 bp upstream of the 3'-primer terminus. The rate of this specific binding interaction is close to diffusion-controlled. The affinity of gp43 for the primer-template junction is modulated specifically by dNTP substrates, with the next "correct" dNTP strengthening the interaction and an incorrect dNTP weakening the observed binding. These results are discussed in terms of the individual steps of the polymerase-catalyzed single nucleotide addition cycle and the replication complex assembly process. We suggest that changes in the kinetics and thermodynamics of these steps by auxiliary replication proteins constitute a basic mechanism for protein coupling within the replication complex.  相似文献   

6.
The effect of NaF on the enzymatic activities of the large fragment of E. coli DNA polymerase I (Klenow enzyme-KE) with different DNA-substrates was studied. It was shown that fluoride ion at concentrations of 5-10 mM efficiently inhibits the 3'----5' exonuclease activity of KE but does not affect the polymerase activity of the enzyme. Selective inhibition of the 3'----5' exonuclease activity of KE is Mg-dependent and is observed with double- or single-stranded DNAs. In reaction with the 14-mer oligonucleotide annealed with single-stranded phage M13 DNA the enzyme was found not only to perform the exonucleolytic hydrolysis of the primers but to catalyse also a limited elongation of some primers, adding a few nucleotide residues in the absence of exogenous dNTP. The primer elongation is inhibited by inorganic pyrophosphatase and is stimulated by micromolar concentrations of exogenous pyrophosphate thus suggesting a possible role of PPi contamination in dNTP generation via pyrophosphorolysis. Traces of precursors in DNA preparations obtained by generally employed methods may serve as another source of nucleotides for the primer elongation.  相似文献   

7.
The 3',5'-exonuclease center of the Klenow fragment of E. coli DNA polymerase I (FK) was selectively blocked by NaF. The latter was shown to forbid the binding of nucleotides and their analogs to the enzyme exonuclease center. In the presence of poly(dT).r(pA)10 template.primer complex and NaF, we observed AMP, ADP, ATP, PPi and dATP to be competitive inhibitors of the FK-catalyzed DNA polymerization. The interactions of the nucleotides with FK and human DNA polymerase alpha were compared to reveal similarity of binding to the DNA polymerizing centers. Structural components of dNTP and PPi playing key roles in forming complexes with pro- and eukaryotic DNA polymerases were identified.  相似文献   

8.
Dalal S  Starcevic D  Jaeger J  Sweasy JB 《Biochemistry》2008,47(46):12118-12125
DNA polymerase beta plays a key role in base excision repair. We have previously shown that the hydrophobic hinge region of polymerase beta, which is distant from its active site, plays a critical role in the fidelity of DNA synthesis by this enzyme. The I260Q hinge variant of polymerase beta misincorporates nucleotides with a significantly higher catalytic efficiency than the wild-type enzyme. In the study described here, we show that I260Q extends mispaired primer termini. The kinetic basis for extension of mispairs is defective discrimination by I260Q at the level of ground-state binding of the dNTP substrate. Our results suggest that the hydrophobic hinge region influences the geometry of the dNTP binding pocket exclusively. Because the DNA forms part of the binding pocket, our data are also consistent with the interpretation that the mispaired primer terminus affects the geometry of the dNTP binding pocket such that the I260Q variant has a higher affinity for the incoming dNTP than wild-type polymerase beta.  相似文献   

9.
10.
During each catalytic cycle, DNA polymerases select deoxyribonucleoside triphosphate (dNTP) substrates complementary to a templating base with high fidelity from a pool that includes noncomplementary dNTPs and both complementary and noncomplementary ribonucleoside triphosphates (rNTPs). The Klenow fragment of Escherichia coli DNA polymerase I (KF) achieves this through a series of conformational transitions that precede the chemical step of phosphodiester bond formation. Kinetic evidence from fluorescence and FRET experiments indicates that discrimination of the base and sugar moieties of the incoming nucleotide occurs in distinct, sequential steps during the selection pathway. Here we show that KF-DNA complexes formed with complementary rNTPs or with noncomplementary nucleotides can be distinguished on the basis of their properties when captured in an electric field atop the α-hemolysin nanopore. The average nanopore dwell time of KF-DNA complexes increased as a function of complementary rNTP concentration. The increase was less than that promoted by complementary dNTP, indicating that the rNTP complexes are more stable than KF-DNA binary complexes but less stable than KF-DNA-dNTP ternary complexes. KF-DNA-rNTP complexes could also be distinguished from KF-DNA-dNTP complexes on the basis of ionic current amplitude. In contrast to complementary rNTPs, noncomplementary dNTPs and rNTPs diminished the average nanopore dwell time of KF-DNA complexes in a concentration-dependent manner, suggesting that binding of a noncomplementary nucleotide keeps the KF-DNA complex in a less stable state. These results imply that nucleotide selection proceeds through a series of complexes of increasing stability in which substrates with the correct moiety promote the forward transitions.  相似文献   

11.
Calf thymus DNA primase was examined to determine the kinetic parameters that define its unusual processivity. At 37 degrees C, the major products were 8-9 and 2-3 nucleotides long. The 2-mer was the predominant product when considered on a molar basis. At each polymerization cycle en route to synthesis of a unit length primer (7-10 nucleotides), processivity was defined by competition of enzyme dissociation with ATP binding as well as an ATP independent step(s). Reducing the temperature to 25 degrees C had relatively little effect on the production of primers less than or equal to 6 nucleotides long, but greatly enhanced production of primers twice (16-18 nucleotides) the normal unit length. Kinetic analysis revealed that synthesis of these longer primers largely involves dissociation of the primase after completion of the unit length primer. After synthesis of a primer, the primase-polymerase complex normally switches to polymerase activity. Only primers greater than or equal to 7 nucleotides long were utilized by the polymerase regardless of the dNTP concentration, indicating that the signal for the primase to polymerase activity switch is primer completion. During the switch, either the primer-template does not dissociate from the complex or the complex has extraordinarily high affinity for the primers. At 25 degrees C and physiological dNTP concentrations the activity switch is very efficient, greater than 90% of the primers are elongated. However, at 37 degrees C the switch is much less efficient, likely due to primer-template denaturation.  相似文献   

12.
DNA polymerase mu (Pol mu) is a family X enzyme with unique substrate specificity that contributes to its specialized role in nonhomologous DNA end joining (NHEJ). To investigate Pol mu's unusual substrate specificity, we describe the 2.4 A crystal structure of the polymerase domain of murine Pol mu bound to gapped DNA with a correct dNTP at the active site. This structure reveals substrate interactions with side chains in Pol mu that differ from other family X members. For example, a single amino acid substitution, H329A, has little effect on template-dependent synthesis by Pol mu from a paired primer terminus, but it reduces both template-independent and template-dependent synthesis during NHEJ of intermediates whose 3' ends lack complementary template strand nucleotides. These results provide insight into the substrate specificity and differing functions of four closely related mammalian family X DNA polymerases.  相似文献   

13.
The catalytic subunit of the human cytomegalovirus DNA polymerase is critical for the replication of the virus. In the present study, we report the expression and purification of a recombinant catalytic subunit of the human cytomegalovirus DNA polymerase expressed in bacteria which retains polymerase activity. As a first step towards elucidating the nature of the interaction between the enzyme, DNA and dNTPs, we have utilized endogenous tryptophan fluorescence to evaluate the binding of ligands to the enzyme. Using this technique, we demonstrate that the minimal DNA-binding site of the enzyme is 6 nt. We also report the first detailed study of the binding kinetics and thermodynamic parameters involved in the interaction between the enzyme, DNA and dNTPs. Our thermodynamic analyses indicate that the initial formation of the enzyme-DNA binary complex is driven by a favourable entropy change, but is also clearly associated with an unfavourable enthalpic contribution. In contrast, the interaction of dNTPs to the binary complex was shown to depend on a completely different mode of binding that is dominated by a favourable enthalpy change and associated with an unfavourable entropy change. In order to provide additional insights into the structural modifications that occur during catalysis, we correlated the effect of DNA and dNTP binding on protein structure using CD. Our results indicate that the enzyme undergoes a first conformational change upon the formation of the protein-DNA binary complex, which is followed by a second structural modification upon dNTP binding. The present study provides a better understanding of the molecular basis of DNA and dNTP recognition by the catalytic subunit of the human cytomegalovirus DNA polymerase.  相似文献   

14.
15.
16.
The modification of tyrosine residues of the human placenta DNA-polymerase alpha by N-acetylimidazole was investigated. The poly(dT)-template and the r(pA)10-primer a each added separately or simultaneously do not influence the rate of enzyme inactivation. In the presence of poly(dT)-r(pA)10 no effect of dCTP and dTTP (noncomplementary to template) and of dAMP and dADP (complementary to template) on the rate and the level of the enzyme inactivation was found. However dATP revealed practically complete protection. Orthophosphate, pyrophosphate each taken separately do not influence the rate of enzyme inactivation with this reagent. The presence of dADP with either ortho- or pyrophosphate, or dAMP with the one of these ligands leads to half protective action in comparison with dATP. Imidazolides of phosphonoacetic acid and 5'-adenylyl++ 1(phosphonoacetic acid) do not inactivate DNA-polymerase alpha from human placenta and the Klenov fragment of DNA-polymerase I from E. coli. All data obtained allow to suggest that the tyrosine residue in the dNTP binding site of DNA-polymerase reveals stacking with the nucleotide only if dNTP is complementary to the template.  相似文献   

17.
Affinity modification of E. coli DNA polymerase I and its Klenow fragment by imidazolides of dNMP (Im-dNMP) and dNTP was studied. DNA polymerase activity of DNA polymerase I was reduced by both Im-dNMP and Im-dNTP. However Im-dNTP does not inactivate of the Klenow fragment. The level of covalent labelling of both enzymes by radioactive Im-dNTP did not exceed 0.01 mol of reagent per mol of enzyme. But the deep inactivation of DNA polymerase I by Im-dNTP was observed. It is likely that this inactivation is due to the formation of intramolecular ether followed by phosphorylation of the carboxyl group. This assumption is strongly supported by the increase of the isoelectrical point of DNA polymerase I after its incubation with Im-dNTP in conditions of enzyme inactivation. All data permit us to suggest that the affinity modification of both enzymes by Im-dNMP and covalent labeling by Im-dNTP takes place without complementary binding of dNTP moiety with the template. However inactivation of DNA polymerase I by Im-dNTP occurs only if the dNTP-moiety is complementary to the template in the template.primer complex. It was shown that His residue was phosphorylated by Im-dNMP and Tyr or Ser residues between Met-802 and Met-848 were phosphorylated by Im-dNTP. We suppose that there are two states of DNA polymerase active site for the binding of dNTPs. One of them is independent on the template, in the other state the dNTP hydrogen bond with the template is formed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号