首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Escherichia coli ornithine transcarbamoylase displays a strict specificity toward its second substrate L-ornithine. After forming a binary complex with carbamoyl phosphate and undergoing an induced-fit isomerization (Miller, A. W., and Kuo, L. C. (1990) J. Biol. Chem. 265, 15023-15027), the enzyme selects only the minor, zwitterionic ornithine with an uncharged delta-amino group for transcarbamoylation. Formation of the productive ternary complex is linked to two enzymic ionizations (pK alpha 6.2 approximately 6.3 and 9.1 approximately 9.3) and two ornithine ionizations (pK alpha 8.5 and 10.6) (Kuo, L. C., Herzberg, W., and Lipscomb, W. N. (1985) Biochemistry 24, 4754-4761). To elucidate the mechanism through which substrate specificity is achieved, the binding of L-ornithine to two site-specific point mutants (Arg-57----Gly and Cys-273----Ala) of the enzyme has been examined. For the Gly-57 mutant enzyme, which does not undergo the induced-fit isomerization, affinity for ornithine drops by a factor of 500. The pH profile of the apparent equilibrium constant governing the association of L-ornithine to the binary complex of this mutant reveals that only two enzymic ionizations affect ornithine binding. The ionizations linked to L-ornithine are not detected. Hence, the preisomerized binary complex binds not only poorly but also indiscriminately all ionic species of L-ornithine. For the Ala-273 mutant enzyme, which exhibits the induced-fit isomerization, affinity of the amino acid is decreased by an order of magnitude. Ionizations of L-ornithine to yield a zwitterion for binding are detected in pH analyses for this mutant, but the pK alpha of 6.2 associated with the enzymic deprotonation in the wild type is absent. Therefore, Cys-273 is a binding site of L-ornithine. The D-isomer of ornithine is a very weak, deadend ligand to all three forms of the enzyme with affinities in the millimolar range. Employing the estimated affinities of D- and L-ornithine, the binding stereospecificity of the wild-type and mutant binary complexes toward the amino acid substrate may be evaluated. L-Ornithine binds preferentially over D-ornithine by two and four orders of magnitude in the absence and presence of protein isomerization, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Jin L  Stec B  Kantrowitz ER 《Biochemistry》2000,39(27):8058-8066
The only cis-proline residue in Escherichia coli aspartate transcarbamoylase has been replaced by alanine using site-specific mutagenesis. The Pro268-->Ala enzyme exhibits a 40-fold reduction in enzyme activity and decreased substrate affinity toward carbamoyl phosphate and aspartate compared to the corresponding values for the wild-type enzyme. The concentration of the bisubstrate analogue N-phosphonacetyl-L-aspartate (PALA) required to activate the mutant enzyme to the same extent as the wild-type enzyme is significantly increased. The heterotropic effects of ATP and CTP upon the Pro268-->Ala enzyme are also altered. Crystal structures of the Pro268-->Ala enzyme in both T- and R-states show that the cis-peptidyl linkage between Leu267 and Ala268 is maintained. However, the tertiary structure of both the catalytic and regulatory chains has been altered by the amino acid substitution, and the mobility of the active-site residues is increased for the R-state structure of Pro268-->Ala enzyme as comparison with the wild-type R-state structure. These structural changes are responsible for the loss of enzyme activity. Thus, Pro268 is required for the proper positioning of catalytically critical residues in the active site and is important for the formation of the high-activity high-affinity R-state of E. coli aspartate transcarbamoylase.  相似文献   

3.
L C Kuo  A W Miller  S Lee  C Kozuma 《Biochemistry》1988,27(24):8823-8832
In the carbamoyl-transfer reaction catalyzed by ornithine transcarbamoylase, an arginine residue in the active site of the Escherichia coli enzyme has been suggested to bind the phosphate moiety of the substrate carbamoyl phosphate. With the application of site-specific mutagenesis, the most likely arginine residue among three candidates at the binding site of carbamoyl phosphate, Arg-57, has been replaced with a glycine. The resultant Gly-57 mutant enzyme is drastically inefficient in catalysis. In the synthesis of L-citrulline from carbamoyl phosphate and L-ornithine with the release of inorganic phosphate, the turnover rate of the mutant is 21,000-fold lower than that of the wild type. However, the mutation of Arg-57 affects only moderately the binding of carbamoyl phosphate; the dissociation constant of this substrate, measured under steady-state turnover condition, is increased from 0.046 to 3.2 mM by the mutation. On the other hand, ornithine binding is substantially affected as estimated by the change in the dissociation constant of its analogue L-norvaline. The dissociation constant of L-norvaline increases about 500-fold from 54 microM for the wild type to 25 mM for the mutant. Since Arg-57 is expected to be distal from the ornithine site and the amino acid (both ornithine and norvaline) binds only after carbamoyl phosphate in the wild-type reaction, the poor norvaline affinity to the mutant suggests that Arg-57 is involved in interactions essential for productive addition of the amino acid. This interpretation is supported by difference ultraviolet absorption spectra which show that the conformational changes induced in the wild type by carbamoyl phosphate upon binding are absent in the mutant. Furthermore, steady-state kinetic data reveal that the ordered binding mechanism of the wild-type enzyme is transformed into a random binding mechanism in the mutant. Thus, the presence of carbamoyl phosphate in the mutant active site is no longer a requisite for ornithine binding. In the 5-50 degrees C temperature range, transcarbamoylation catalyzed by either the wild type or the mutant observes the Arrhenius rate law with almost identical enthalpies of activation, 11 and 10 kcal/mol, respectively. The entropy of activation is -5.5 eu for the wild-type reaction and -29 eu for the mutant reaction, accounting for a loss of 6-7 kcal/mol in the rate-determining step of the enzymic reaction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
It has been appreciated for many years that the luciferase from the luminous marine bacterium Vibrio harveyi has a highly reactive cysteinyl residue which is protected from alkylation by binding of flavin. Alkylation of the reactive thiol, which resides in a hydrophobic pocket, leads to inactivation of the enzyme. To determine conclusively whether the reactive thiol is required for the catalytic mechanism, we have constructed a mutant by oligonucleotide directed site-specific mutagenesis in which the reactive cysteinyl residue, which resides at position 106 of the α subunit, has been replaced with a seryl residue. The resulting α106Ser luciferase retains full activity in the bioluminescence reaction, although the mutant enzyme has a ca 100-fold increase in the FMNH2 dissociation constant. The α106Ser luciferase is still inactivated by N-ethylmaleimide, albeit at about 1/10 the rate of the wild-type (α106Cys) enzyme, demonstrating the existence of a second, less reactive, cysteinyl residue that was obscured in the wild-type enzyme by the highly reactive cysteinyl residue at position α106. An α106Ala variant luciferase was also active, but the α106Val mutant enzyme was about 50-fold less active than the wild type. All three variants (Ser, Ala and Val) appeared to have somewhat reduced affinities for the aldehyde substrate, the valine mutant being the most affected. It is interesting to note that the α106 mutant luciferases are much less subject to aldehyde substrate inhibition than is the wild-type V. harveyi luciferase, suggesting that the molecular mechanism of aldehyde substrate inhibition involves the Cys at α106.  相似文献   

5.
S A Berger  P R Evans 《Biochemistry》1992,31(38):9237-9242
Six active site mutants of Escherichia coli phosphofructokinase have been constructed and characterized using steady-state kinetics. All but one of the mutants (ES222) have significantly lower maximal activity, implicating these residues in the catalytic process. Replacement of Asp127, the key catalytic residue in the forward reaction with Glu, results in an enzyme with wild-type cooperative and allosteric behavior but severely decreased Fru6P binding. Replacement of the same residue with Tyr abolishes cooperativity while retaining sensitivity to allosteric inhibition and activation. Thus, this mutant has uncoupled homotropic from heterotropic allostery. Mutation of Asp103 to Ala results in an enzyme which retains wild-type Fru6P-binding characteristics with reduced activity. GDP, which allosterically activates the wild-type enzyme, acts as a mixed inhibitor for this mutant. Mutation of Thr125 to Ala and Asp129 to Ser produces mutants with impaired Fru6P binding and decreased cooperativity. In the presence of the activator GDP, both these mutants display apparent negative cooperativity. In addition, ATP binding is now allosterically altered by GDP. These results extend the number of active site residues known to participate in the catalytic process and help to define the mechanisms behind catalysis and homotropic and heterotropic allostery.  相似文献   

6.
Modeling of the tetrahedral intermediate within the active site of Escherichia coli aspartate transcarbamoylase revealed a specific interaction with the side-chain of Gln137, an interaction not previously observed in the structure of the X-ray enzyme in the presence of N-phosphonacetyl-L-aspartate (PALA). Previous site-specific mutagenesis experiments showed that when Gln137 was replaced by alanine, the resulting mutant enzyme (Q137A) exhibited approximately 50-fold less activity than the wild-type enzyme, exhibited no homotropic cooperativity, and the binding of both carbamoyl phosphate and aspartate were extremely compromised. To elucidate the structural alterations in the mutant enzyme that might lead to such pronounced changes in kinetic and binding properties, the Q137A enzyme was studied by time-resolved, small-angle X-ray scattering and its structure was determined in the presence of PALA to 2.7 angstroms resolution. Time-resolved, small-angle X-ray scattering established that the natural substrates, carbamoyl phosphate and L-aspartate, do not induce in the Q137A enzyme the same conformational changes as observed for the wild-type enzyme, although the scattering pattern of the Q137A and wild-type enzymes in the presence of PALA were identical. The overall structure of the Q137A enzyme is similar to that of the R-state structure of wild-type enzyme with PALA bound. However, there are differences in the manner by which the Q137A enzyme coordinates PALA, especially in the side-chain positions of Arg105 and His134. The replacement of Gln137 by Ala also has a dramatic effect on the electrostatics of the active site. These data taken together suggest that the side-chain of Gln137 in the wild-type enzyme is required for the binding of carbamoyl phosphate in the proper orientation so as to induce conformational changes required for the creation of the high-affinity aspartate-binding site. The inability of carbamoyl phosphate to create the high-affinity binding site in the Q137A enzyme results in an enzyme locked in the low-activity low-affinity T state. These results emphasize the absolute requirement of the binding of carbamoyl phosphate for the creation of the high-affinity aspartate-binding site and for inducing the homotropic cooperativity in aspartate transcarbamoylase.  相似文献   

7.
Glu-50 of aspartate transcarbamoylase from Escherichia coli forms a set of interdomain bridging interactions between the 2 domains of the catalytic chain; these interactions are critical for stabilization of the high-activity high-affinity form of the enzyme. The mutant enzyme with an alanine substituted for Glu-50 (Glu-50-->Ala) exhibits significantly reduced activity, little cooperativity, and altered regulatory behavior (Newton CJ, Kantrowitz ER, 1990, Biochemistry 29:1444-1451). A study of the structural consequences of replacing Glu-50 by alanine using solution X-ray scattering is reported here. Correspondingly, in the absence of substrates, the mutant enzyme is in the same, so-called T quaternary conformation as is the wild-type enzyme. In the presence of a saturating concentration of the bisubstrate analog N-phosphonacetyl-L-aspartate (PALA), the mutant enzyme is in the same, so-called R quaternary conformation as the wild-type enzyme. However, the Glu-50-->Ala enzyme differs from the wild-type enzyme, in that its scattering pattern is hardly altered by a combination of carbamoyl phosphate and succinate. Addition of ATP under these conditions does result in a slight shift toward the R structure. Steady-state kinetic studies indicate that, in contrast to the wild-type enzyme, the Glu-50-->Ala enzyme is activated by PALA at saturating concentrations of carbamoyl phosphate and aspartate, and that PALA increases the affinity of the mutant enzyme for aspartate. These data suggest that the enzyme does not undergo the normal T to R transition upon binding of the physiological substrates and verifies the previous suggestion that the interdomain bridging interactions involving Glu-50 are critical for the creation of the high-activity, high-affinity R state of the enzyme.  相似文献   

8.
The active site lysyl residue (K239) of the thermostable aspartate aminotransferase [EC 2.6.1.1] was replaced by cysteinyl residue by means of site-directed mutagenesis. The K239C mutant enzyme obtained was catalytically inactive. The reaction of the cysteinyl residue of the K239C mutant enzyme with ethylenimine led to the formation of S-(beta-aminoethylcysteinyl (SAEC) residue. The K239SAEC mutant enzyme obtained showed about 25% of the activity of wild-type enzyme, and absorbed at 375 nm, which suggested the internal Schiff base formation.  相似文献   

9.
Aspartate transcarbamoylase undergoes a domain closure in the catalytic chains upon binding of the substrates that initiates the allosteric transition. Interdomain bridging interactions between Glu(50) and both Arg(167) and Arg(234) have been shown to be critical for stabilization of the R state. A hybrid version of the enzyme has been generated in vitro containing one wild-type catalytic subunit, one catalytic subunit in which Glu(50) in each catalytic chain has been replaced by Ala (E50A), and wild-type regulatory subunits. Thus, the hybrid enzyme has one catalytic subunit capable of domain closure and one catalytic subunit incapable of domain closure. The hybrid does not behave as a simple mixture of the constituent subunits; it exhibits lower catalytic activity and higher aspartate affinity than would be expected. As opposed to the wild-type enzyme, the hybrid is inhibited allosterically by CTP at saturating substrate concentrations. As opposed to the E50A holoenzyme, the hybrid is not allosterically activated by ATP at saturating substrate concentrations. Small angle x-ray scattering showed that three of the six interdomain bridging interactions in the hybrid is sufficient to cause the global structural change to the R state, establishing the critical nature of these interactions for the allosteric transition of aspartate transcarbamoylase.  相似文献   

10.
The X-ray structure of the Escherichia coli aspartate transcarbamoylase with the bisubstrate analog phosphonacetyl-L-aspartate (PALA) bound shows that PALA interacts with Lys84 from an adjacent catalytic chain. To probe the function of Lys84, site-specific mutagenesis was used to convert Lys84 to alanine, threonine, and asparagine. The K84N and K84T enzymes exhibited 0.08 and 0.29% of the activity of the wild-type enzyme, respectively. However, the K84A enzyme retained 12% of the activity of the wild-type enzyme. For each of these enzymes, the affinity for aspartate was reduced 5- to 10-fold, and the affinity for carbamoyl phosphate was reduced 10- to 30-fold. The enzymes K84N and K84T exhibited no appreciable cooperativity, whereas the K84A enzyme exhibited a Hill coefficient of 1.8. The residual cooperativity and enhanced activity of the K84A enzyme suggest that in this enzyme another mechanism functions to restore catalytic activity. Modeling studies as well as molecular dynamics simulations suggest that in the case of only the K84A enzyme, the lysine residue at position 83 can reorient into the active site and complement for the loss of Lys84. This hypothesis was tested by the creation and analysis of the K83A enzyme and a double mutant enzyme (DM) that has both Lys83 and Lys84 replaced by alanine. The DM enzyme has no cooperativity and exhibited 0.18% of wild-type activity, while the K83A enzyme exhibited 61% of wild-type activity. These data suggest that Lys84 is not only catalytically important, but is also essential for binding both substrates and creation of the high-activity, high-affinity active site. Since low-angle X-ray scattering demonstrated that the mutant enzymes can be converted to the R-structural state, the loss of cooperativity must be related to the inability of these mutant enzymes to form the high-activity, high-affinity active site characteristic of the R-functional state of the enzyme.  相似文献   

11.
The effector binding site of Escherichia coli aspartate transcarbamoylase, composed of the triphosphate and ribose-base subsites, is located on the regulatory (r) chains of the enzyme. In order to probe the function of amino acid side chains at this nucleotide triphosphate site, site-specific mutagenesis was used to create three mutant versions of the enzyme. On the basis of the three-dimensional structure of the enzyme with CTP bound, three residues were selected. Specifically, Arg-96r was replaced with Gln, and His-20r and Tyr-89r were both replaced with Ala. Analyses of these mutant enzymes indicate that none of these substitutions significantly alter the catalytic properties of the enzyme. However, the mutations at His-20r and Tyr-89r produced altered response to the regulatory nucleotides. For the His-20r----Ala enzyme, the affinities of the enzyme for ATP and CTP are reduced 40-fold and 10-fold, respectively, when compared with the wild-type enzyme. Furthermore, CTP is able to inhibit the His-20r----Ala enzyme 40% more than the wild-type enzyme. In the case of the Tyr-89r----Ala enzyme. ATP can increase the mutant enzyme's activity 181% compared to 157% for the wild-type enzyme, while simultaneously the affinity of this enzyme for ATP decreases about 70%. These results suggest that Tyr-89r does have an indirect role in the discrimination between ATP and CTP. The His-20r----Ala enzyme shows no UTP synergistic inhibition in the presence of CTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Aspartate-162 in the catalytic chain of aspartate transcarbamoylase is conserved in all of the sequences determined to date. The X-ray structure of the Escherichia coli enzyme indicates that this residue is located in a loop region (160's loop) that is near the interface between two catalytic trimers and is also close to the active site. In order to test whether this conserved residue is important for support of the internal architecture of the enzyme and/or involved in transmitting homotropic and heterotropic effects, the function of this residue was studied using a mutant version of the enzyme with an alanine at this position (Asp-162----Ala) created by site-specific mutagenesis. The Asp-162----Ala enzyme exhibits a 400-fold reduction in the maximal observed specific activity, approximately 2-fold and 10-fold decreases in the aspartate and carbamoyl phosphate concentrations at half the maximal observed specific activity respectively, a loss of homotropic cooperativity, and loss of response to the regulatory nucleotides ATP and CTP. Furthermore, equilibrium binding studies indicate that the affinity of the mutant enzyme for CTP is reduced more than 10-fold. The isolated catalytic subunit exhibits a 660-fold reduction in maximal observed specific activity compared to the wild-type catalytic subunit. The Km values for aspartate and carbamoyl phosphate for the Asp-162----Ala catalytic subunit were within 2-fold of the values observed for the wild-type catalytic subunit. Computer simulations of the energy-minimized mutant enzyme indicate that the space once occupied by the side chain of Asp-162 may be filled by other side chains, suggesting that Asp-162 is important for stabilizing the internal architecture of the wild-type enzyme.  相似文献   

13.
The sigmoidal dependence of activity on substrate concentration exhibited by the regulatory enzyme aspartate transcarbamoylase (ATCase) of Escherichia coli is generally attributed to a ligand-promoted change in the quaternary structure of the enzyme. Although a global conformational change in ATCase upon the binding of ligands to some of the six active sites is well documented, a corresponding alteration in the structure of the wild-type enzyme upon the addition of the inhibitor, CTP, or the activator, ATP, has not been detected. Such evidence is essential for testing whether heterotropic, as well as homotropic, effects can be accounted for quantitatively in terms of coupled equilibria involving a conformational change in the enzyme and preferential binding of ligands to one conformation or the other. This evidence has now been obtained with a mutant form of ATCase in which Lys 143 in the regulatory chain was replaced by Ala, thereby perturbing interactions at the interface between the regulatory and catalytic chains in the enzyme and destabilizing the low-activity, compact (T) conformation relative to the high-activity, swollen (R) state. Difference sedimentation velocity experiments involving measurements of the changes caused by the binding of the bisubstrate analogue N-(phosphonacetyl)-L-aspartate demonstrated that the sedimentation coefficient of the mutant enzyme was intermediate between that observed for the T and R states of wild-type ATCase. We interpret the results as indicating that the [T]/[R] ratio in phosphate buffer at pH 7.0 is reduced from about 2 X 10(2) for the wild-type enzyme to 2.7 for r143Ala ATCase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Aldose-ketose isomerization by xylose isomerase requires bivalent cations such as Mg2+, Mn2+, or Co2+. The active site of the enzyme from Actinoplanes missouriensis contains two metal ions that are involved in substrate binding and in catalyzing a hydride shift between the C1 and C2 substrate atoms. Glu 186 is a conserved residue located near the active site but not in contact with the substrate and not with a metal ligand. The E186D and E186Q mutant enzymes were prepared. Both are active, and their metal specificity is different from that of the wild type. The E186Q enzyme is most active with Mn2+ and has a drastically shifted pH optimum. The X-ray analysis of E186Q was performed in the presence of xylose and either Mn2+ or Mg2+. The Mn2+ structure is essentially identical to that of the wild type. In the presence of Mg2+, the carboxylate group of residue Asp 255, which is part of metal site 2 and a metal ligand, turns toward Gln 186 and hydrogen bonds to its side-chain amide. Mg2+ is not bound at metal site 2, explaining the low activity of the mutant with this cation. Movements of Asp 255 also occur in the wild-type enzyme. We propose that they play a role in the O1 to O2 proton relay accompanying the hydride shift.  相似文献   

15.
Y Zhang  E R Kantrowitz 《Biochemistry》1989,28(18):7313-7318
Lysine-60 in the regulatory chain of aspartate transcarbamoylase has been changed to an alanine by site-specific mutagenesis. The resulting enzyme exhibits activity and homotropic cooperativity identical with those of the wild-type enzyme. The substrate concentration at half the maximal observed specific activity decreases from 13.3 mM for the wild-type enzyme to 9.6 mM for the mutant enzyme. ATP activates the mutant enzyme to the same extent that it does the wild-type enzyme, but the concentration of ATP required to reach half of the maximal activation is reduced approximately 5-fold for the mutant enzyme. CTP at a concentration of 10 mM does not inhibit the mutant enzyme, while under the same conditions CTP at concentrations less than 1 mM will inhibit the wild-type enzyme to the maximal extent. Higher concentrations of CTP result in some inhibition of the mutant enzyme that may be due either to hetertropic effects at the regulatory site or to competitive binding at the active site. UTP alone or in the presence of CTP has no effect on the mutant enzyme. Kinetic competition experiments indicate that CTP is still able to displace ATP from the regulatory sites of the mutant enzyme. Binding measurements by equilibrium dialysis were used to estimate a lower limit on the dissociation constant for CTP binding to the mutant enzyme (greater than 1 x 10(-3) M). Equilibrium competition binding experiments between ATP and CTP verified that CTP still can bind to the regulatory site of the enzyme. For the mutant enzyme, CTP affinity is reduced approximately 100-fold, while ATP affinity is increased by 5-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Site-directed mutagenesis was used to determine how the allosteric properties of aspartate transcarbamoylase (ATCase) are affected by amino acid replacements in the nucleotide binding region of the regulatory polypeptide chains. Amino acid substitutions were made for both Lys-60 and Lys-94 in the regulatory chain since those residues have been implicated by x-ray diffraction studies, chemical modification experiments, and site-directed mutagenesis as playing a role in binding CTP and ATP. Lys-60 was replaced by His, Arg, Gln, and Ala, and Lys-94 was changed to His. These mutant forms of ATCase exhibit bewildering changes in the allosteric properties compared to the wild-type enzyme as well as altered affinities for the nucleotide effectors. The enzyme containing His-60 lacks both homotropic and heterotropic effects and exhibits no detectable binding of nucleotides. In contrast, the holoenzymes containing either Gln-60 or Arg-60 retain both homotropic and heterotropic effects. Replacement of Lys-60 by Ala yields a derivative exhibiting altered heterotropic effects involving insensitivity to CTP and activation by ATP. The mutant enzyme containing His-94 in place of Lys exhibits cooperativity with reduced affinity for nucleotides. The multiple substitutions at Lys-60 in the nucleotide binding region of the regulatory chains of ATCase demonstrate that different amino acids in the same location can alter indirectly the delicate balance of interactions responsible for the allosteric properties of ATCase. The studies show that it is hazardous and frequently unwarranted from single amino acid replacements of a specific residue to attribute to that residue the properties observed for the wild-type enzyme.  相似文献   

17.
Lys-356 has been implicated as a critical residue for binding the C-6 phospho group of fructose 2,6-bisphosphate to the fructose-2,6-bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (Li, L., Lin, K., Correia, J., and Pilkis, S. J. (1992) J. Biol. Chem. 267, 16669-16675). To ascertain whether the three other basic residues (Arg-352, Arg-358, and Arg-360), which are located in a surface loop (residues 331-362) which contains Lys-356, are important in substrate binding, these arginyl residues were mutated to Ala, and each arginyl mutant was expressed in Escherichia coli and purified to homogeneity. The far UV circular dichroism spectra of the mutants were identical to that of the wild-type enzyme. The kinetic parameters of 6-phosphofructo-2-kinase of the mutants revealed only small changes. However, the Km for fructose 2,6-bisphosphate, Ki for fructose 6-phosphate, and Ka for inorganic phosphate of fructose-2,6-bisphosphatase for Arg352Ala were, respectively, 2,800-, 4,500-, and 1,500-fold higher than those for the wild-type enzyme, whereas there was no change in the maximal velocity or the Ki for inorganic phosphate. The Km for fructose 2,6-bisphosphate and Ki for inorganic phosphate of Arg360Ala were 10- and 12-fold higher, respectively, than those of the wild-type enzyme, whereas the maximal velocity and Ki for fructose 6-phosphate were unchanged. In addition, substrate inhibition was not observed with Arg352Ala and greatly reduced with Arg360Ala. The properties of the Arg358Ala mutant were identical to those of the wild-type enzyme. The results demonstrate that in addition to Lys-356, Arg-352 is another critical residue in fructose-2,6-bisphosphatase for binding the C-6 phospho group of fructose 2,6-bisphosphate and that Arg-360 binds the C-2 phospho group of fructose 2,6-bisphosphate in the phosphoenzyme.fructose 2,6-bisphosphate complex. The results also provide support for Arg-352, Lys-356, and Arg-360 constituting a specificity pocket for fructose-2,6-bisphosphatase.  相似文献   

18.
The available crystal structures of Escherichia coli aspartate transcarbamoylase (ATCase) show that the conserved residue Asp-162 from the catalytic chain interacts with essentially the same residues in both the T- and R-states. To study the role of Asp-162 in the regulatory properties of the enzyme, this residue has been replaced by alanine. The mutant D162A shows a 7700-fold reduction in the maximal observed specific activity, a twofold decrease in the affinity for aspartate, a loss of homotropic cooperativity, and decreased activation by the nucleotide effector adenosine triphosphate (ATP) compared with the wild-type enzyme. Small-angle X-ray scattering (SAXS) measurements reveal that the unliganded mutant enzyme adopts the T-quaternary structure of the wild-type enzyme. Most strikingly, the bisubstrate analog N-phosphonacetyl-L-aspartate (PALA) is unable to induce the T to R quaternary structural transition, causing only a small alteration of the scattering pattern. In contrast, addition of the activator ATP in the presence of PALA causes a significant increase in the scattering amplitude, indicating a large quaternary structural change, although the mutant does not entirely convert to the wild-type R structure. Attempts at modeling this new conformation using rigid body movements of the catalytic trimers and regulatory dimers did not yield a satisfactory solution. This indicates that intra- and/or interchain rearrangements resulting from the mutation bring about domain movements not accounted for in the simple model. Therefore, Asp-162 appears to play a crucial role in the cooperative structural transition and the heterotropic regulatory properties of ATCase.  相似文献   

19.
Each of the four identical subunits of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase contains two cysteine residues, Cys156 and Cys296 (Beach, M. J., and Rodwell, V. W. (1989) J. Bacteriol. 171, 2994-3001). Both are accessible to modification by sulfhydryl reagents under nondenaturing conditions (Jordan-Starck, T. C., and Rodwell, V. W. (1989) J. Biol. Chem. 264, 17913-17918). We used site-directed mutagenesis to construct three mutant enzymes in which alanine replaced either or both cysteine residues. Mutant enzymes C156A, C296A, and C156/296A were over-expressed in Escherichia coli and were found to be fully active. Following their purification, all four forms of the enzyme were compared with respect to their catalytic efficiency, their affinities for the substrates of all four catalyzed reactions, and for their sensitivity to inactivation by sulfhydryl reagents. Replacement of cysteine residues with alanine residues had no major effect on either the specific activity or the affinity of the enzymes for any substrate. The mutants catalyzed all four HMG-CoA reductase reactions as efficiently as did the wild-type enzyme, and coenzyme A stimulated mevaldehyde reduction to the same extent as for wild-type HMG-CoA reductase. Mutant C156A and the cysteine-free mutant C156/296A were not inactivated by 5,5'-dithiobis(2-nitrobenzoate). By contrast, mutant C296A was inactivated to the same extent as was the wild-type enzyme. Following treatment of the mutant enzymes with N-ethylmaleimide, the four reductase reactions catalyzed by mutant C296A were inactivated to the same extent as for the wild-type enzyme. Neither mutant C156A nor C156/296A was affected by this reagent. We conclude that the sulfhydryl reagent-reactive group whose derivatization leads to loss of enzymatic activity is Cys156. However, this residue is not an essential active site residue since neither substrate binding nor catalysis was affected when it was replaced by alanine. Possible roles of cysteine in maintaining structural stability are discussed.  相似文献   

20.
Aspartate transcarbamoylase from Escherichia coli is a dodecameric enzyme consisting of two trimeric catalytic subunits and three dimeric regulatory subunits. Asp-100, from one catalytic chain, is involved in stabilizing the C1-C2 interface by means of its interaction with Arg-65 from an adjacent catalytic chain. Replacement of Asp-100 by Ala has been shown previously to result in increases in the maximal specific activity, homotropic cooperativity, and the affinity for aspartate (Baker DP, Kantrowitz ER, 1993, Biochemistry 32:10150-10158). In order to determine whether these properties were due to promotion of domain closure induced by the weakening of the C1-C2 interface, we constructed a double mutant version of aspartate transcarbamoylase in which the Asp-100-->Ala mutation was introduced into the Glu-50-->Ala holoenzyme, a mutant in which domain closure is impaired. The Glu-50/Asp-100-->Ala enzyme is fourfold more active than the Glu-50-->Ala enzyme, and exhibits significant restoration of homotropic cooperativity with respect to aspartate. In addition, the Asp-100-->Ala mutation restores the ability of the Glu-50-->Ala enzyme to be activated by succinate and increases the affinity of the enzyme for the bisubstrate analogue N-(phosphonacetyl)-L-aspartate (PALA). At subsaturating concentrations of aspartate, the Glu-50/Asp-100-->Ala enzyme is activated more by ATP than the Glu-50-->Ala enzyme and is also inhibited more by CTP than either the wild-type or the Glu-50-->Ala enzyme. As opposed to the wild-type enzyme, the Glu-50/Asp-100-->Ala enzyme is activated by ATP and inhibited by CTP at saturating concentrations of aspartate. Structural analysis of the Glu-50/Asp-100-->Ala enzyme by solution X-ray scattering indicates that the double mutant exists in the same T quaternary structure as the wild-type enzyme in the absence of ligands and in the same R quaternary structure in the presence of saturating PALA. However, saturating concentrations of carbamoyl phosphate and succinate only convert a fraction of the Glu-50/Asp-100-->Ala enzyme population to the R quaternary structure, a behavior intermediate between that observed for the Glu-50-->Ala and wild-type enzymes. Solution X-ray scattering was also used to investigate the structural consequences of nucleotide binding to the Glu-50/Asp-100-->Ala enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号