首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A scheme is proposed for generating the intact Val-448-Phe-545 polypeptide of human plasminogen which contains the fifth kringle domain of the plasmin heavy chain. The procedure is based on a pepsin fragmentation of miniplasminogen and involves the purification of the kringle 5-containing fragment by gel filtration and ion-exchange chromatography. The final product is characterized by amino acid analysis, N- and C-terminal analyses, and high-resolution 1H-NMR spectroscopy at both 300 MHz and 611 MHz. We detect a (40:60%) Asp/Asn heterogeneity at site 452 of the Glu-plasminogen molecule. In the conventional kringle numbering system, the kringle 5 domain extends from Cys-1 to Cys-80, which corresponds to Cys-461 to Cys-540 in plasminogen. A preliminary 1H-NMR characterization of kringle 5 focuses on the global conformational features of the polypeptide. Assignments are given for a number of resonances, including the Tyr-72, the His imidazoles' and the Trp indoles' spin systems. Comparison with human plasminogen kringles 1 and 4 shows that the kringle 5 conformation is highly structured and very similar to that of the homologous domains. This conservancy is particularly striking in the environment surrounding Leu-46 and in the overall features of the aromatic spectrum. There are some differences, particularly in the buried His-33 imidazole group, whose H2 resonance is shifted to 9.67 ppm. A preliminary study of benzamidine-binding shows that the ligand interacts weakly (Ka approximately equal to 1.7 mM -1) mainly through the amidino functional group. Trp-62 and Tyr-72 are significantly perturbed by benzamidine, suggesting that these residues are part of the ligand-binding site.  相似文献   

2.
The isolated kringle 4 domain of human plasminogen has been compared with homologous structures from bovine and porcine sources, both free and in the presence of the ligand 6-aminohexanoic acid, by two-dimensional 1H-NMR spectroscopies at 300 MHz and 600 MHz. The chemical-shift-correlated, spin-echo-correlated, and double-quantum-correlated aromatic spectra of the three proteins reveal that the globular conformation of the fourth kringle is closely maintained throughout the set of homologs. Direct comparison shows that the three conserved Trp residues (at sites 25, 62 and 72) which exhibit highly non-degenerate subspectra, find themselves in similar intramolecular environments. In particular, proton Overhauser experiments reveal that the close steric interaction between the Trp-II (Trp62 or Trp25) indole group and the aromatic ring at site 74 (Tyr74 or Phe74) is strictly preserved. This feature forces the kringle inner loop, closed by the Cys51-Cys75 link, to fold back onto itself so as to place the site 74 residue proximal to the Cys22-Cys63 bridge. Single-residue substitutions enable unambiguous assignments of His-I to His3, Tyr-III to Tyr41 and Tyr-IV to Tyr74. From this direct evidence, comparison with the kringle 1 spectrum, and the previously reported chemical modification of Tyr-II (Tyr50) [Trexler M., Bányai L., Patthy L., Pluck N. D. & Williams R. J. P. (1985) Eur. J. Biochem. 152, 439-446], Tyr-I and Tyr-V (the latter, an immobile ring on the 600-MHz time scale) could be assigned to Tyr2 and Tyr9, respectively. Since Trp-III has previously been assigned to Trp72 at the lysine-binding site, the present study completes the assignment of 10 out of 12 aromatic spin systems in the kringle 4 1H-NMR spectrum; the only ambiguity which remains concerns the Trp-I and Trp-II indole spin systems, which are totally identified but as yet only tentatively assigned to Trp25 and Trp62, respectively.  相似文献   

3.
Structural aspects of the binding of the linear ligands N alpha-acetyl-L-lysine (AcLys) and epsilon-aminocaproic acid (epsilon ACA) and of the cyclic analogs trans-(aminomethyl)-cyclohexanecarboxylic acid (AMCHA) and p-benzylaminesulfonic acid (BASA) to the intact plasminogen kringle 4 domain have been investigated by 1H-NMR spectroscopy at 300 and 600 MHz. Ligand binding results in consistent shifts of the His-II (His31), Trp-I (Trp25?), Trp-II (Trp62?), Trp-III (Trp72), Tyr-II (Tyr50), and Phe64 ring signals. BASA tends to induce larger shifts than elicited by the aliphatic ligands, most noticeably on Trp-II and on Trp72, suggesting that the ligand aromatic ring interacts with the two indole groups. Trp-II and, to lesser extent, Trp-I interact with an acidic side chain group, in a manner that is blocked by BASA. BASA binding also perturbs Tyr-II (Tyr50), Tyr-III (Tyr41), and Tyr-IV (Tyr74) over a wide pH range and lowers the pKa* of His31 from approximately 4.8 to approximately 4.6. His-III (His33) responds to BASA and AMCHA but is relatively insensitive to the linear ligands. His33 carries a sterically shielded side chain which, in conjunction with Leu46, Trp-I, Tyr50, and Tyr74, participates in structuring the kringle hydrophobic core, contiguous to the binding site. Pronounced shifts are observed for aliphatic resonances stemming from the kringle-bound molecules of AMCHA, AcLys, and epsilon ACA. It is proposed that the lysine-binding site is mostly supported by the loop that extends from Cys51 through Cys71 and that aromatic residues, which include Trp-II, Trp72, and Phe64, play a major role in interacting with the nonpolar segment of the ligand molecule. The binding site also encompasses Tyr50, Tyr74, His31, and His33 although it is not clear the extent to which these residues interact directly with the ligand.  相似文献   

4.
The intact kringle 4 domain of chicken plasminogen has been characterized by 1H NMR spectroscopy at 300 and 620 MHz in both the presence and absence of epsilon-aminocaproic acid, an antifibrinolytic drug. The study focuses on the aromatic resonances. Comparisons with spectra from human, porcine and bovine kringle 4 homologs indicates a strict conservancy of conformation, reflecting the underlying primary sequence homology, and leads to an unambiguous assignment of all the aromatic resonances, including those of Phe15 and His40 which are unique to the chicken domain. Conclusive evidence is found that the Tyr9 ring fluctuates between two states, one in which it flips fast and other in which it is severely hindered. Similarly, the Tyr64 side chain finds itself in a structurally constrained locus. The Trp62, Tyr64, and Trp72 aromatic resonances are most sensitive to ligand presence, supporting a previously reported model of the kringle 4 lysine-binding site. His40, Phe41, and Tyr74 are also perturbed by ligand indicating proximity to the site. In contrast, the Phe15 aromatic spectrum indicates a rather mobile phenyl ring which is insensitive to ligand presence, thus confirming the lesser importance of the corresponding segment within the first kringle loop in determining kringle structure and/or function.  相似文献   

5.
Photo-chemically induced dynamic nuclear polarization (photo-CIDNP) one-dimensional and two-dimensional (2D)1H-NMR techniques have been applied to the study of the kringle 4 domain of human plasminogen both ligand-free and complexed to the antifibrinolytic drugs ɛ-aminocaproic acid and p-benzylaminesulfonic acid (BASA). A number of aromatic side-chains (His3, Trp72, Tyr41, Tyr50 and Tyr74) appear to be exposed and accessible to 3-N-car☐ymethyl-lumiflavin, the photopolarizing flavin dye, both in the presence and in the absence of ligands. A lesser exposure is observed for the Trp25 and Trp62 indole groups in the presence of BASA. The spin-spin (J-coupling) and dipolar (Overhauser) connectivities in the 2D experiments afford absolute assignment of aromatic resonances for the above residues, as well as of those stemming from the Trp72 ring in the presence of BASA. Moreover, a number of Hβ resonances can be identified and sorted according to specific types of amino acid residues.  相似文献   

6.
Photo-chemically induced dynamic nuclear polarization (photo-CIDNP) one-dimensional and two-dimensional (2D) 1H-NMR techniques have been applied to the study of the kringle 4 domain of human plasminogen both ligand-free and complexed to the antifibrinolytic drugs epsilon-aminocaproic acid and p-benzylaminesulfonic acid (BASA). A number of aromatic side-chains (His3, Trp72, Tyr41, Tyr50 and Tyr74) appear to be exposed and accessible to 3-N-carboxymethyl-lumiflavin, the photopolarizing flavin dye, both in the presence and in the absence of ligands. A lesser exposure is observed for the Trp25 and Trp62 indole groups in the presence of BASA. The spin-spin (J-coupling) and dipolar (Overhauser) connectivities in the 2D experiments afford absolute assignment of aromatic resonances for the above residues, as well as of those stemming from the Trp72 ring in the presence of BASA. Moreover, a number of H beta resonances can be identified and sorted according to specific types of amino acid residues.  相似文献   

7.
The aliphatic 1H-NMR spectrum of the kringle 4 domain of human plasminogen has been studied via two-dimensional chemical shift correlated (COSY) and nuclear Overhauser correlated (NOESY) experiments at 300 MHz and 620 MHz. A number of aliphatic proton spin systems have been identified and several definite assignments have been made. This was mainly achieved by comparison of the human kringle 4 spectrum with spectra of the porcine, bovine and chicken homologs and also with that of the kringle 1 from human plasminogen on which we have reported previously. The three valyl and two leucyl residues of human kringle 4 have been assigned. The eleven threonyl spin systems have been identified via a RELAYED-COSY experiment and Thr17 has been assigned. The three alanyl spin systems have been identified and assigned. Six seryl spin systems have been identified and the signals from the seven glycyl residues of human kringle 4 have been located with Gly45 assigned. Furthermore, 24 AMX spin systems have been mapped in the COSY spectrum of human kringle 4 and H alpha-H beta,beta' spin systems of Tyr2, Tyr41, Tyr50, Tyr74, Trp25 and Trp62 have been assigned. From the spectrum of a deglycosylated chicken homolog, the epsilon-methyl singlets of Met28 and Met48 have been assigned. Finally, ligand effects on selected aliphatic resonances were observed which could be analyzed in terms of residues likely to neighbor the kringle lysine-binding site.  相似文献   

8.
The aromatic 1H NMR spectrum of the kringle 4 domain from human plasminogen has been reexamined in order to identify signals stemming from individual residues. Acid-base titration, nuclear Overhauser effect experiments, and two-dimensional correlated spectroscopies have been implemented in order to analyze the spectrum both in the presence and in the absence of ligands. All six histidyl imidazole singlets have been recognized and paired according to their common side-chain origin. A similar identification has been achieved for the three sets of tryptophanyl resonances, and for Trp-I, the correspondence between indole singlet and multiplets is unambiguously established. The single phenylalanyl side chain and all tyrosyl phenol spin systems have been identified. Titration experiments indicate that one or two of the tryptophans are in the vicinity of carboxyl groups. It is shown that the spectrum for one tyrosyl ring, Tyr-V, undetectable at approximately 300 MHz, becomes visible at 600 MHz, reflecting slow motion on the NMR time scale and a constrained location within the kringle. A simulation of the complete kringle 4 aromatic spectrum is included.  相似文献   

9.
The kringle 5 domain of plasminogen exhibits potent inhibitory effect on endothelial cell proliferation. It can also cause cell cycle arrest and apoptosis of endothelia cell specifically, and shows promise in antiangiogenic therapy. It has been prepared via both proteolysis of native plasminogen and recombinant DNA methodologies. When expressed in E. coli, recombinant, kringle 5 deposited mainly as inactive, insoluble inclusion bodies and the refolding yield was also low. In the present study, human kringle 5 encoding gene was cloned into secretory plasmid pPIC9K and then integrated into Pichia pastoris genome for expression. On methanol induction, biologically active recombinant kringle 5 was expressed and secreted into the culture medium by the integrated Pichia pastoris with the expression level around 30mg/L of yeast culture. After a simple and economical three-step purification protocol, namely precipitation, DEAE ion exchange chromatography, and gel filtration, the recombinant kringle 5 was purified to homogeneity, with the yield of 7.5 mg/liter yeast culture.  相似文献   

10.
The aromatic H NMR spectrum of the kringle 1 domain from human plasminogen has been investigated by proton Overhauser experiments, acid-base titration, and two-dimensional chemical shift correlated spectroscopy. Spin-echo and pH response experiments lead to the identification of the N-terminal Tyr-3 phenol ring signals. The connectivities among the tryptophanyl aromatic protons have been established and sets of singlet-doublet-triplet resonances stemming from each of the two indole groups sorted according to their common side chain origin. Similarly, the four histidyl singlets have been identified and paired per imidazole group. From their pH responses, it is indicated that a histidyl (His31) and a tryptophanyl (Trp-II) residue are placed in the neighborhood of carboxyl groups. The high-field chemical shifts observed for proton resonances of the ligand epsilon-aminocaproic acid upon binding to kringle 1 indicate that the ligand-binding site is rich in aromatic components. Overhauser experiments reveal that Leu46 is surrounded by a cluster of interacting aromatic side chains, which includes Trp25, Phe36, His41, Trp62, and Tyr64, and define a hydrophobic region contiguous to the kringle lysine-binding site. Relative internuclear distances have been estimated for aromatic H-atoms in the vicinity of Leu46 by reference to one of the latter's CH3 sigma, sigma' groups. Some of the connectives have previously been found for Leu46 in kringle 4 which further supports the idea of a common structure for the homologous domains.  相似文献   

11.
Native kringle 4 from human plasminogen has been studied by two-dimensional 1H-NMR methods in order to obtain new structural information about the kringle fold. Two-dimensional scalar correlated spectroscopy (COSY), two-dimensional dipolar correlated spectroscopy (NOESY) and two-dimensional relayed coherance transfer spectroscopy (RCT) experiments were recorded, allowing most resonances arising from the aromatic and methyl-containing residues to be assigned in the spectrum. From an analysis of NOE data, a small segment of double-stranded beta-sheet has been identified near residues Phe63 and Thr64. Further analysis of the NOESY spectrum has allowed detailed study of the conformation of sidechains located in regions near Leu45 and Val69. A model has been constructed of the polypeptide segment comprising residues 40-49 which accounts for the observed NOE interactions.  相似文献   

12.
I J Byeon  R F Kelley  M Llinás 《Biochemistry》1989,28(24):9350-9360
The kringle 2 domain of human tissue-type plasminogen activator (t-PA) has been characterized via 1H NMR spectroscopy at 300 and 620 MHz. The experiments were performed on the isolated domain obtained by expression of the 174-263 portion of t-PA in Escherichia coli [Cleary et al. (1989) Biochemistry 28, 1884-1891]. The spectrum of t-PA kringle 2 is characteristic of a globular structure and shows overall similarity to that of the plasminogen (PGN) kringle 4. Spectral comparison with human and bovine PGN kringle 4 identifies side-chain resonances from Leu46, which afford a fingerprint of kringle folding, and from most of the aromatic ring spin systems. Assignment of signals arising from the His13, His48a, and His64 side chains, which are unique to t-PA kringle 2, was assisted by the availability of a His64----Tyr mutant. Ligand-binding studies confirm that t-PA kringle 2 binds L-lysine with an association constant Ka approximately 11.9 mM-1. The data indicate that homologous or conserved residues relative to those that compose the lysine-binding sites of PGN kringles 1 and 4 are involved in the binding of L-lysine to t-PA kringle 2. These include Tyr36 and, within the kringle inner loop, Trp62, His64, Trp72, and Tyr74. Acid/base titration of aromatic singlets in the presence of L-lysine yields pKa* approximately 6.25 and approximately 4.41 for His13 and His64, respectively, and shows that the His48a imidazole group does not protonate down to pH* approximately 4.3. Thus, the His48a and His64 side chains are in solvent-shielded locations. As observed for the PGN kringles, the Trp62 indole group titrates with pKa* approximately 4.60, which indicates proximity of the side chain to a titratable carboxyl group, most likely that of Asp57 at the binding site. Several labile NH protons of t-PA kringle 2 exhibit retarded H-exchange kinetics, requiring more than a week in 2H2O for full deuteration in the presence of L-lysine at 37 degrees C. This reveals that kringle 2 is endowed with a compact, dynamically stable conformation. Proton Overhauser experiments in 1H2O, centered on well-resolved NH resonances between 9.8 and 12 ppm, identify signals arising from the His48a imidazole NH3 proton and the three Trp indole NH1 protons. A strong dipolar interaction was observed among the Trp25 indole NH1, the Tyr50 amide NH, and the His48a imidazole CH2 protons, which affords evidence for an aromatic cluster in t-PA kringle 2 similar to that found at the hydrophobic kernel of PGN kringles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The kringle 5 domain of plasminogen exhibits potent inhibitory effect on endothelial cell proliferation. It can also cause cell cycle arrest and apoptosis of endothelial cell specifically, and shows promise in anti-angiogenic therapy. It has been prepared via both proteolysis of native plasminogen and recombinant DNA methodologies. When previously expressed in Escherichia coli, recombinant kringle 5 mainly deposited as inactive, insoluble inclusion bodies and the refolding yield was low. In the present study, human kringle 5 was fusion-expressed with GST (gluthathione-S-transferase) under the control of T7 promoter in E. coli. The IPTG-induced GST-kringle 5 was about 20% of the total cellular proteins and, among the expressed GST-kringle 5 proteins, 80% was present in the supernatant. The GST-kringle 5 fusion protein exhibited some anti-proliferation activity towards bovine capillary endothelial cells. After GST-kringle 5 purification, subsequent enterokinase release of intact kringle 5 from the fusion protein and further purification by gluthathione-Sepharose 4B affinity chromatography, the recombinant kringle 5, with a yield of 10.5 mg/L culture, displayed apparent inhibition of endothelial cell proliferation in a dose-dependent manner with ED50 about 20 nM.  相似文献   

14.
The binding of small molecules to the kringle 5 domain fragment of human plasminogen has been investigated by 1H NMR spectroscopy at 300 MHz. The compounds tested as potential ligands include L-arginine, L-lysine, and a number of aliphatic and aromatic analogs of similar size but different ionic charge configurations. Ligand/kringle 5 association constant (Ka) values were obtained from ligand titration experiments at 22 degrees C, pH 7.2. Neither L-arginine nor N alpha-acetyl-L-arginine and N alpha-acetyl-L-arginine methyl ester bind measurably to kringle 5 (Ka approximately less than 0.05 mM-1). In contrast, binding of hexylamine or epsilon-aminocaproic acid (epsilon ACA) is favored (Ka approximately 2.9 and 10.5 mM-1, respectively). Benzamidine and p-benzylaminesulfonic acid associate with kringle 5 with similar affinities (Ka approximately 3.4 and 2.2 mM-1, respectively) while benzylamine binds about twice as tightly (Ka approximately 6.3 mM-1). The higher affinities toward both benzylamine and epsilon ACA indicate that a free carboxylate group is not, by itself, a main determinant of ligand-binding to kringle 5. The experiments also reveal a definite affinity for L-arginine methyl ester, L-lysine, and N alpha-acetyl-L-lysine methyl ester. It is suggested that, although weak (0.1 approximately less than Ka approximately less than 0.6 mM-1), these interactions could be of physiological relevance in the context of plasminogen binding to the fibrin clot. Ligand-induced shifts of kringle 5 proton resonances indicate that the Trp25, His33, Tyr50, Trp62, and Tyr72 (kringle numbering convention) side chains form or neighbor the kringle 5-binding site. Benzamidine-kringle 5 magnetization transfer (Overhauser) experiments verify a close proximity of the bound ligand to these aromatic groups. A model of the binding site is proposed in which the above residues interact closely with each other and define a lipophilic surface which is accessible to the free ligand.  相似文献   

15.
The interaction of the isolated human plasminogen kringle 4 with the four -amino acid ligands -aminocaproic acid (ACA), N-acetyl-l-lysine (AcLys), trans-aminomethyl(cyclohexane)carboxylic acid (AMCHA) and p-benzylaminesulfonic acid (BASA) has been further characterized by 1H-NMR spectroscopy at 300 and 600 MHz. Pronounced high-field shifts, reaching 3 ppm, are observed for AMCHA resonances upon binding to kringle 4, which underscores the relevance of ligand lipophilic interactions with aromatic side chains at the binding site. Ligand titration curves for the nine His and Trp singlets found in the kringle 4 aromatic spectrum reveal a striking uniformity in the kringle response to the various ligands. The average binding curves exhibit a clear Langmuir absorption isotherm saturation profile and the data were analyzed under the assumption of one (high affinity) binding site per kringle. Equilibrium association constants (K a ) and first order dissociation rate constants (k off) were derived from linearized expressions of the Langmuir isotherm and of the spectral line-shapes, respectively. The results for the four ligands, at 295 K, pH* 7.2, indicate that: (a) AMCHA exhibits the strongest binding (K a =159 mM -1) and ACA the weakest (K a =21 mM –1) with AcLys and BASA falling in between; (b) ACA dissociates readily (k off = 5.3 × 103 s–1) and AMCHA associates the fastest (k off = 2.0 × 108 M –1 s–1) while the kinetics for BASA exchange is relatively slow (k off = 0.8 × 103 s–1, k on = 0.6 × 108 M –1s–1); (c) the ligand-binding kinetics is close to diffussion-controlled.Abbreviations ACA -aminocaproic acid - AcLys N-acetyl-l-lysine - AMCHA t-aminomethyl(cyclohexane)carboxylic acid - BASA p-benzylaminesulfonic acid - K4 kringle 4 - NOE nuclear Overhauser effect - ppm parts-per-million - pH* glass electrode pH reading uncorrected for deuterium isotope effects - K a ligand-kringle 4 equilibrium association constant - k off ligand-kringle 4 dissociation rate constant - k on ligand-kringle 4 association rate constant  相似文献   

16.
The structure of a small region of human plasminogen (F4), consisting of amino acid residues Val354-Ala439 and containing its kringle 4 (K4) domain (residues Cys357-Cys434), has been predicted from Chou-Fasman calculations and hydropathy profiles, and compared to circular dichroism (CD) measurements on the isolated fragment. Calculations, by the Chou-Fasman method, of the probabilities of various types of secondary structures that exist in this region reveal that no helical structures are present. Of the total of 86 amino acid residues present in this K4-containing peptide region, 37% can adopt conformations of beta-pleated sheets, 48% of the amino acids can exist in beta-turns, and 15% of the residues can be present as coils. The structure of F4 in dilute aqueous solution has been experimentally evaluated by CD measurements. At pH = 7.4, in dilute salt solutions, a total of 64% beta-structures, 30% beta-turns, and 6% coiled structures is estimated to be present in this peptide region. Consideration of the marginal stability of many of the conformational regions of F4, as predicted by Chou-Fasman calculations, suggests that secondary structural flexibility is present in this fragment, which could result in ready adoption of new conformations. The hydropathy profile of F4 has been determined and suggests that this polypeptide is highly hydrophilic, especially in the regions of residues His387-Tyr396 and Cys406-Lys413. Thus, it appears as though a large portion of the surface of F4 can be exposed to solvent in its native conformation.  相似文献   

17.
A novel fusion protein expression plasmid that allows ready purification and subsequent facile release of the target molecule has been constructed and employed to express in Escherichia coli and purify the tissue plasminogen activator kringle 1 domain ([K1tPA] residues C92-C173). The resulting plasmid encodes the tight lysine-binding kringle (K)1 domain of human plasminogen ([K1HPg]) followed by a peptide (PfXa) containing a factor Xa-sensitive bond, downstream of which [K1tPA] was inserted. The recombinant (r) [K1HPg]PfXa[K1tPA] fusion polypeptide was purified from various cell fractions in one step by Sepharose-lysine affinity chromatography. After cleavage with fXa, the mixture was repassaged over Sepharose-lysine, whereupon the r-[K1tPA]-containing polypeptide passed unretarded through the column. A homogeneous preparation of this material was then obtained after a simple step employing fast protein liquid chromatography. The purified r-[K1tPA], which contained the amino acid sequence SNAS[K1tPA]S, provided an amino-terminal amino acid sequence, through at least 20 amino acid residues, that was identical to that predicted from the cDNA sequence. The molecular mass of r-SNAS[K1tPA]S, determined by electrospray mass spectrometry, was 9621.9 +/- 4.0 (expected molecular mass, 9623.65). 1H-NMR spectroscopy and thermal stability studies of r-SNAS[K1tPA]S revealed that the purified material was properly folded and similar to other isolated kringle domains. Additionally, employment of this methodology revealed that only a very weak interaction between epsilon-aminocaproic acid and the isolated r-[K1tPA] domain occurred.  相似文献   

18.
Kringle 1 (Tyr 79/Leu 80-His 167 and Tyr 79/Leu 80-Tyr 173), a chymotryptic fragment of human plasminogen that has high affinity for fibrin and omega-aminocarboxylic acids, has been subjected to modification with 1,2-cyclohexanedione to identify arginine residues essential for ligand binding. Reaction of 1,2-cyclohexanedione with kringle 1 was found to rapidly abolish the fibrin-Sepharose affinity of the fragment, whereas the affinity for lysine-Sepharose was lost at a significantly slower rate. Successive affinity chromatography of modified kringle 1 on fibrin- and lysine-Sepharose was used to separate kringle 1 that lost affinity for fibrin-, but retained affinity for lysine-Sepharose from kringle 1 that lost affinity for both affinants. The modified proteins were subjected to structural studies in order to locate the labeled arginine residues in kringle 1. These studies have revealed that modification of Arg 34 leads to the loss of both the fibrin- and lysine-Sepharose affinities of kringle 1, whereas reaction of Arg 32 abolishes fibrin affinity but leaves lysine-Sepharose affinity unaltered. The results suggest that Arg 32 and Arg 34 are both involved in fibrin binding and that Arg 34 is also involved in binding omega-aminocarboxylic acids. Previous NMR studies on kringles have indeed shown that the segment containing residue 34 is in the proximity of and interacts with the omega-aminocarboxylic acid-binding site. This interaction may explain the influence of omega-aminocarboxylic acids on fibrin binding by kringle 1.  相似文献   

19.
The internal motions of the backbone nitrogen atoms of the kringle 1 domain of human plasminogen (K1(Pg)) were examined in the absence and presence of the ligand, epsilon-aminocaproic acid. These dynamic properties were determined from (15)N NMR relaxation data in terms of the extended model-free parameters. The model of isotropic reorientation was found sufficient to account for overall molecular tumbling for both apo and EACA-bound K1(Pg). The global rotational correlation time (tau(m)) for apo-K1(Pg) was 5.87(+/-0.01) ns, while the tau(m) for ligand-bound K1(Pg) was 5.20(+/-0.01) ns, suggesting that perhaps some small degree of aggregation occurred in the apo form of the kringle module. Complexation of K1(Pg) with ligand mainly reduced those internal motions that occurred on a 100 ps to 5 ns time-scale. The magnitude of the chemical exchange was also attenuated upon ligand binding. These data are consistent with studies employing other approaches that suggest that the binding pocket is preformed in K1(Pg).  相似文献   

20.
Kringle1-5 (K1-5), a proteolytic fragment containing five kringle domains of human plasminogen generated by plasmin-mediated proteolysis, has been already identified by Cao et al. with relation to anti-angiogenesis and proliferation of endothelial cells. To investigate anti-angiogenesis activity of recombinant human K1-5 (rhK1-5) expressed in Escherichia coli BL21, the cDNA of human K1-5 obtained from cloning vector pUC57-K1-5 by PCR, was inserted into an expression vector pET30(+) to construct a prokaryotic expression vector pET-K1-5. Recombinant K1-5 efficiently expressed in E. coli BL21 after IPTG induction was monitored by SDS-PAGE and Western blotting with an anti-angiostatin monoclonal antibody and an anti-hexahistidine tag antibody. The expressed K1-5 accounted for approximately 32% of the total bacterial proteins as estimated by densitometry, and existed mainly as inclusion bodies. The inclusion bodies were washed, lysed, purified, and refolded to a purity of 96% as estimated by capillary electrophoresis and the final purification yield of K1-5 in E. coli system was approximately 5.8 mg/L. Purified K1-5 protein was tested on chicken embryo chorioallantoic membranes (CAMs), and a large number of newly formed blood vessels were significantly regressed. In the present study, we demonstrated that bacterial-expressed K1-5 effectively inhibited angiogenesis of the chicken embryo in a dose-dependent manner through CAM assay. In addition, the rhK1-5 potently inhibited endothelial cell proliferation but not non-endothelial cells. For the first time, these findings demonstrate that the rhK1-5 produced by a prokaryote expression system effectively inhibited angiogenesis of the chicken embryo in a dose-dependent manner and specially suppressed in vitro the proliferation of human umbilical vein endothelial cells. This fact derived from the present study further suggests the rhK1-5 can be used for anti-angiogenesis therapy of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号