首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The target of our current work was designed to prepare titanium oxide doped silver nanoparticles (Ag/TiO2NPs) and their impact on the functionalization of cotton fabrics. Additionally, the effect of Ag/TiO2NPs was compared with the individually prepared silver nanoparticles (AgNPs) and titanium oxide nanoparticles (TiO2NPs). In this work, AgNPs were prepared in the solid state using arabic gum as efficient stabilizing and reducing agent. Then, two concentrations of the as-synthesized nanoparticles were used to functionalize the cotton fabrics by pad-dry-cure treatment in the presence of fixing agent to increase the durability of treated cotton fabrics against vigorous washing cycles. The findings implied that the as-prepared nanoparticles were successfully synthesized in nano-size with spherical shape and homogeneity. The efficacy of the functionalized cotton fabrics with those nanoparticles were evaluated in terms of multifunctional properties including antimicrobial and ultraviolet protection factor (UPF) and the mechanical features before and after many washing cycles; 10, 15 and 20 times. The resultant also proved that Ag/TiO2NPs-treated cotton fabrics exhibited the greater values of both antimicrobial and UPF properties with enhancement in the tensile strength and elongation features. Thus, the combination between these two nanoparticles through doping reaction is suitable for imparting superior antimicrobial properties against the four tested microbial species (Staphylococcus aureus, Escherichia coli, Candida albicans, and Aspergillus niger) and good UPF properties. Depending on the promising obtained results of the multi-finishing fabrics, these nanoparticles of Ag/TiO2NPs can be applied for the production of an efficient medical clothes for doctors, nurses and bed sheets for patients in order to kill and prevent the spread of bacteria and then, reduce the transmission of infection to others.  相似文献   

2.
Antimicrobial action of silver nitrate   总被引:2,自引:0,他引:2  
R M Richards 《Microbios》1981,31(124):83-91
Silver nitrate 3 mug/ml prevented the separation into two daughter cells of sensitive dividing cells of Pseudomonas aeruginosa growing in nutrient broth plus the chemical. Cell size of sensitive cells was increased and the cytoplasmic contents, cytoplasmic membrane and external cell envelope structures were all abnormal. P. aeruginosa cells grown in the presence of silver nitrate 9 mug/ml showed all these changes to a marked degree except inhibition of cell division was not observed. Silver nitrate (1.5 mug/ml) in distilled water inactivated bacteriophage T2 particles as determined by their infectivity to Escherichia coli B cultures. Lysozyme (50 mug/ml) reduced, and sodium chloride (0.9%) blocked this activity.  相似文献   

3.
A biomimetic bone-like composite, made of self-assembled collagen fibrils and carbonate hydroxyapatite nanocrystals, has been performed by an electrochemically-assisted deposition on titanium plate. The electrolytic processes have been carried out using a single type I collagen molecules suspension in a diluted Ca(NO3)2 and NH4H2PO4 solution at room temperature and applying a constant current for different periods of time. Using the same electrochemical conditions, carbonate hydroxyapatite nanocrystals or reconstituted collagen fibrils coatings were obtained. The reconstituted collagen fibrils, hydroxyapatite nanocrystals and collagen fibrils/apatite nanocrystals coatings have been characterized chemically, structurally and morphologically, as well as for their ability to bind fibronectin (FN). Fourier Transform Infrared microscopy has been used to map the topographic distribution of the coating components at different times of electrochemical deposition, allowing to single out the individual deposition steps. Moreover, roughness of Ti plate has been found to affect appreciably the nucleation region of the inorganic nanocrystals. Laser scanning confocal microscopy has been used to characterize the FN adsorption pattern on a synthetic biomimetic apatitic phase, which exhibits a higher affinity when it is inter-grown with the collagen fibrils. The results offer auspicious applications in the preparation of medical devices such as biomimetic bone-like composite-coated metallic implants.  相似文献   

4.
Antimicrobial cellulose acetate nanofibers containing silver nanoparticles   总被引:11,自引:0,他引:11  
It was found for the first time that polymer nanofibers containing Ag nanoparticles on their surface could be produced by UV irradiation of polymer nanofibers electrospun with small amounts of silver nitrate (AgNO3). When the cellulose acetate (CA) nanofibers electrospun from CA solutions with 0.5 wt% of AgNO3 were irradiated with UV light at 245 nm, Ag nanoparticles were predominantly generated on the surface of the CA nanofibers. The number and size of the Ag nanoparticles were continuously increased up to 240 min. The Ag+ ions and Ag clusters diffused and aggregated on the surface of the CA nanofibers during the UV irradiation. The Ag nanoparticles with an average size of 21 nm exhibited strong antimicrobial activity.  相似文献   

5.
Contaminated surfaces are possible vehicles in infection transmission. It is known that both Copper (Cu) and Silver (Ag) efficiently inactivate microbes by direct contact. Aiming at using these metals for benefitting from their antimicrobial effect, but to avoid subsequent toxic effects, we evaluated the antimicrobial activity of nanometric thin Silver and Copper films covering less expensive materials. Using a modified version of the Japan Industrial Standard JIS Z 2801:2000, we demonstrated the antimicrobial activity of the surfaces covered with metal ions nanofilms on microorganisms possibly involved in nosocomial infections and on Bacillus anthracis, bacteria with possible implication in bioterrorist attacks. Copper covered surfaces proved to have better antimicrobial activity than Silver surfaces. Silver covered surfaces showed better activity on Gram negative bacteria than on Gram positive cocci. Going deeper with studies on antimicrobial effects using new methods with better direct and/or functional discriminatory capacity is needed in order to provide additional information on the mechanisms of Silver and Copper nanofilms antimicrobial activity.  相似文献   

6.
A much studied oil-soluble surfactant, bis[2-ethylhexyl]sulfosuccinate, sodium salt, was ion exchanged into the silver ion form and dissolved into microemulsions of immiscible polyurethane step monomers. Coating and curing of these microemulsions produced polyurethane coatings that exhibit bactericidal activity against representative Gram negative bacteria. After 24 h exposure, 0.006–0.012% weight Ag relative to coating weight (0.0013–0.0025 μmol Ag/cm2) results in the three-log reduction in Escherichia coli. A slightly higher level of 0.031% weight Ag relative to coating weight (0.006 μmol Ag/cm2) killed all of the E. coli after 12 h exposure. Similar results were obtained for Pseudomonas aeruginosa. Since the double-tail surfactant anion promotes reverse micelle formation in many different kinds of oils and solvents, it appears an excellent vector for incorporating low and effective amounts of silver ion into many industrial, hospital, and household coating formulations.  相似文献   

7.
Aims: Development and evaluation of an antimicrobially active titanium dioxide coating. Methods and results: For this purpose, titanium dioxide coatings were applied to glass slides by using a sol‐gel method and then exposed to a light source. The antimicrobial efficiency was determined by a count reduction test for selected test strains (Aspergillus niger, Bacillus atrophaeus, Kocuria rhizophila), which were homogenously sprayed onto surface. The bacterial count of K. rhizophila was reduced by up to 3·3 log10 on titanium dioxide samples within 4 h of UV‐A light exposure. Experiments with spore formers did not lead to any significant log reduction. A further aspect of this work was to evaluate the effect of selected parameters (relative humidity, inoculation density, radiation intensity) on the antimicrobial efficiency to gain knowledge for further optimization procedures. At a high relative humidity (85% r.h.), increased inactivation was observed for K. rhizophila (up to 5·2 log10). Furthermore, a dependency of the antimicrobial effect on the radiation intensity and the inoculation density was identified. Conclusions: Antimicrobial surfaces and coatings based on titanium dioxide have the potential to effectively inactivate vegetative micro‐organisms. Significance and impact of the study: Knowledge about the antimicrobial efficiency of titanium dioxide was gained. This is a prerequisite for industrial applications to improve hygiene, food quality and safety.  相似文献   

8.
Conditions for obtaining stable silver nanoparticles smaller than 10 nm were developed using a binary stabilizer polyvinylpyrrolidone/sodium dodecylsulphate in optimal ratio. Optical spectra, morphology and dependence of size of the nanoparticles on the amount of reducing agent were studied. Colloidal solutions of nanosilver showed a high bactericidal activity against strains of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, and fungicidal activity against Candida albicans. The mechanism of action of nanosized silver on microbial cell was examined by laser scanning confocal microscope using fluorescent label. First step of antimicrobial effect on microorganisms was membrane damage and penetration of silver nanoparticles into the cell. Prolonged stability of nanoparticles and their antimicrobial activity over the past two years were showed.  相似文献   

9.
AgNO3对大肠杆菌和金黄色葡萄球菌的抗菌作用及机制   总被引:1,自引:0,他引:1  
以大肠杆菌和金黄色葡萄球菌为模式菌,对AgNO3的抗菌效果进行研究,并对其抗菌机制作初步探讨。AgNO3对大肠杆菌的抑制生长曲线表明:2.891 mg/L的AgNO3能够完全抑制106个/mL的大肠杆菌细胞生长,AgNO3使大肠杆菌和金黄色葡萄球菌的延滞期加长,并且浓度越高,延滞期越长。另外,AgNO3对大肠杆菌和金黄色葡萄球菌脱氢酶的活性有明显影响,随着AgNO3浓度的提高,脱氢酶的活性逐渐降低。AgNO3溶液作用于细菌后,细菌表面疏水性均有不同程度地下降,且浓度越大对其影响也越明显,大肠杆菌的下降程度要大于金黄色葡萄球菌。  相似文献   

10.
11.
Antimicrobial silver: uses, toxicity and potential for resistance   总被引:1,自引:0,他引:1  
This review gives a comprehensive overview of the widespread use and toxicity of silver compounds in many biological applications. Moreover, the bacterial silver resistance mechanisms and their spread in the environment are discussed. This study shows that it is important to understand in detail how silver and silver nanoparticles exert their toxicity and to understand how bacteria acquire silver resistance. Silver ions have shown to possess strong antimicrobial properties but cause no immediate and serious risk for human health, which led to an extensive use of silver-based products in many applications. However, the risk of silver nanoparticles is not yet clarified and their widespread use could increase silver release in the environment, which can have negative impacts on ecosystems. Moreover, it is shown that silver resistance determinants are widely spread among environmental and clinically relevant bacteria. These resistance determinants are often located on mobile genetic elements, facilitating their spread. Therefore, detailed knowledge of the silver toxicity and resistance mechanisms can improve its applications and lead to a better understanding of the impact on human health and ecosystems.  相似文献   

12.
13.
The application of metal nanoparticles in modern society is growing, but there is insufficient data concerning their influence on reproductive processes and comparison of their biological activity. The present experiments aimed to compare the effects of silver and titanium dioxide nanoparticles (AgNPs and TiO2NPs) on ovarian granulosa cell functions. AgNPs and TiO2NPs were added to culture of porcine granulosa cells at doses 0, 0.01, 0.1, 1 or 10 μg/mL. The mRNAs for proliferating cell nuclear antigen (PCNA), cyclin B1, bax and caspase 3 were quantified by RT-PCR; release of progesterone was analyzed by ELISA. It was shown that both AgNPs and TiO2NPs significantly reduced all the measured parameters. ED50 of the inhibitory influence of AgNPs on the main ovarian cell parameters was higher than ED50 of TiO2NPs. The ability of AgNPs and TiO2NPs to suppress ovarian granulosa cell functions should be taken into account by their application.  相似文献   

14.
Natural bone consists of hard nanostructured hydroxyapatite (HA) in a nanostructured protein-based soft hydrogel template (ie, mostly collagen). For this reason, nanostructured HA has been an intriguing coating material on traditionally used titanium for improving orthopedic applications. In addition, helical rosette nanotubes (HRNs), newly developed materials which form through the self-assembly process of DNA base pair building blocks in body solutions, are soft nanotubes with a helical architecture that mimics natural collagen. Thus, the objective of this in vitro study was for the first time to combine the promising attributes of HRNs and nanocrystalline HA on titanium and assess osteoblast (bone-forming cell) functions. Different sizes of nanocrystalline HA were synthesized in this study through a wet chemical precipitation process following either hydrothermal treatment or sintering. Transmission electron microscopy images showed that HRNs aligned with nanocrystalline HA, which indicates a high affinity between both components. Some of the nanocrystalline HA formed dense coatings with HRNs on titanium. More importantly, results demonstrated enhanced osteoblast adhesion on the HRN/nanocrystalline HA-coated titanium compared with conventional uncoated titanium. Among all the HRN/nanocrystalline HA coatings tested, osteoblast adhesion was the greatest when HA nanometer particle size was the smallest. In this manner, this study demonstrated for the first time that biomimetic HRN/nanocrystalline HA coatings on titanium were cytocompatible for osteoblasts and, thus, should be further studied for improving orthopedic implants.  相似文献   

15.
16.
Protein microarray technologies are rapidly expanding to fulfill current needs of proteome discovery for disease management. Nanostructured materials have been shown to present interesting features when used in biological settings: nanostructured titanium oxide film (ns-TiOx), synthesized by supersonic cluster beam deposition (SCBD), has recently emerged as a biocompatible substrate in different biological assays. The ns-TiOx surface is characterized by a morphology at the nanoscale that can be tuned to modulate specific biomolecule–material interactions. Here we present a systematic characterization of ns-TiOx coatings as protein binding surfaces, comparing their performances with those of most common commercial substrates in protein and antibody microarray assays. Through a robust statistical evaluation of repeatability in terms of coefficient of variation (CV) analysis, we demonstrate that ns-TiOx can be used as reliable substrate for biochips in analytical protein microarray application.  相似文献   

17.
Pathogens isolated from fish appear to possess considerable antimicrobial resistance and represent a problem for the economy and public health. Natural antimicrobial substitutes to traditional antibiotics represent an essential tool in the fight against antibiotic resistance. Nanotechnology has shown considerable potential in different research fields, and the antimicrobial properties of silver nanoparticles are known. Silver has been used for medical purposes since ancient times because of its bactericidal properties, and the highly reactive surfaces of silver nanoparticles (AgNPs) indicate that they might have a function in antimicrobial applications. This work aimed to study the antimicrobial properties of biologically produced AgNPs from Origanum vulgare leaves compared to chemically produced AgNPs. Both types were characterized by UV–vis spectrophotometry, TEM, and dynamic light scattering and tested against three bacterial strains (Streptococcus agalactiae, and Aeromonas hydrophila, both isolated from Nile tilapia and Vibrio alginolyticus, isolated from sea bass) and three fungal strains (Aspergillus flavus, Fusarium moniliforme, and Candida albicans, all isolated from Nile tilapia). Disk diffusion test and evaluation of ultrastructure changes of tested microorganisms treated with AgNPs by transmission electron microscopy were performed. Moreover, the hemolytic properties of AgNPs were studied on chicken and goat red blood cells. The results obtained declare that the green biological production of silver nanoparticles is safer and more effective than the chemical one; moreover, AgNPs have interesting dose-dependent antimicrobial properties, with better results for biologically produced ones; their effectiveness against tested bacterial and fungal strains opens the way to their use to limit fish diseases, increase economy and improve human health.  相似文献   

18.
AIMS: To determine the rate of reduction of Legionella pneumophila by stainless steel surfaces with zeolite ceramic coatings containing 2.5% (w/w) silver (Ag) and 14% zinc (Zn) ions. METHODS AND RESULTS: Stainless steel pans with and without Ag/Zn coatings were inoculated with solutions of Leg. pneumophila ATCC 33155 and incubated at 37 degrees C. Survival was monitored using the spread-plate technique on selective buffered charcoal yeast extract agar. Significant reductions of Leg. pneumophila were effected by the Ag/Zn zeolite coatings within 2 h of exposure. CONCLUSIONS, Significance and Impact of the Study: Zeolite ceramic Ag/Zn coatings impart significant anti-Legionella properties to stainless steel surfaces. Coated stainless steel could be used in the manufacture of air ducts, condensation pans and intake and exhaust vents. These products have the potential to reduce numbers of Legionella in air-handling systems.  相似文献   

19.
Surgical sutures play important role during the wound healing of the surgical sites which are known to be sensitive to microbial infections. Silver nanoparticles (AgNPs) have been recently used as promising agents against multiple-drug resistant microorganisms. This study was designed to coat the sutures with silver nanoparticles obtained via a green synthesis approach. Microbial-mediated biological synthesis of AgNPs were carried out ecofriendly using Streptomyces sp. AU2 cell-free extract and deposited on silk sutures through an in situ process. Sutures coated with biosyntehsized AgNP (bio-AgNP coated sutures) were characterized using Scanning Electron Microscopy (SEM) and elemantal analysis were carried out using Energy Dispersive X-ray Spectroscopy (EDS). The silver amount released by the bio-AgNP coated sutures was calculated by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) throughout a degradation process. Antimicrobial potential of the bio-AgNP coated sutures was determined against common pathogenic microorganisms Candida albicans, Escherichia coli and Staphylococcus aureus. To determine the biocompatibility/cytotoxicty of the bio-AgNP coated sutures, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium) assay was used through an indirect test method; that the elutions obtained by the extraction of the sutures at 1, 4, 8 and 10. days and were placed in contact with 3T3 fibroblast cell culture. To best of our knowledge, this is the first report about coating of the nonabsorbable silk sutures with silver nanoparticles biosynthesized using a microbial extract.  相似文献   

20.
Highly fluorinated tris(pyrazolyl)borate ligand [HB(3,5-(CF3)2Pz)3]- has been used in the isolation of air- and light-stable silver complex, [HB(3,5-(CF3)2Pz)3]Ag(OSMe2). It is a monomeric tetrahedral silver complex with an O-bonded dimethylsulfoxide ligand. The silver adduct [HB(3,5-(CF3)2Pz)3]Ag(OSMe2) and the related [HB(3,5-(CF3)2Pz)3] Ag(THF) (where OSMe2 = dimethyl sulfoxide; THF = tetrahydrofuran) show good antibacterial activity, and their antimicrobial efficacy against Staphylococcus aureus is greater than those of AgNO3 and silver sulfadiazine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号