首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vivo catabolism of 125I-labeled alpha 1-antichymotrypsin was studied in our previously described mouse model. Native alpha 1-antichymotrypsin cleared with an apparent t1/2 of 85 min, but alpha 1-antichymotrypsin in complex with chymotrypsin or cathepsin G cleared with a t1/2 of 12 min. Clearance of the complex was blocked by a large molar excess of unlabeled complexes of proteinases with either alpha 1-antichymotrypsin or alpha 1-proteinase inhibitor. These studies indicate that the clearance of alpha 1-antichymotrypsin-proteinase complexes utilizes the same pathway as complexes with the homologous inhibitor alpha 1-proteinase inhibitor. Previous studies have demonstrated that this pathway is also responsible for the catabolism of two other serine proteinase inhibitors, antithrombin III and heparin cofactor II. This pathway is thus responsible for removing several proteinases involved in coagulation and inflammation from the circulation, thereby decreasing the likelihood of adventitious proteolysis.  相似文献   

2.
In vivo clearance studies have indicated that the clearance of proteinase complexes of the homologous serine proteinase inhibitors alpha 1-proteinase inhibitor and antithrombin III occurs via a specific and saturable pathway located on hepatocytes. In vitro hepatocyte-uptake studies with antithrombin III-proteinase complexes confirmed the hepatocyte uptake and degradation of these complexes, and demonstrated the formation of a disulfide interchange product between the ligand and a cellular protein. We now report the results of in vitro hepatocyte uptake studies with alpha 1-proteinase inhibitor-trypsin complexes. Trypsin complexes of alpha 1-proteinase inhibitor were prepared and purified to homogeneity. Uptake of these complexes by hepatocytes was time and concentration-dependent. Competition experiments with alpha 1-proteinase inhibitor, alpha 1-proteinase inhibitor-trypsin, and antithrombin III-thrombin indicated that the proteinase complexes of these two inhibitors are recognized by the same uptake mechanism, whereas the native inhibitor is not. Uptake studies were performed at 37 degrees C with 125I-alpha 1-proteinase inhibitor-trypsin and analyzed by sodium dodecyl sulfate-gel electrophoresis in conjunction with autoradiography. These studies demonstrated time-dependent uptake and degradation of the ligand to low molecular weight peptides. In addition, there was a time-dependent accumulation of a high molecular weight complex of ligand and a cellular protein. This complex disappeared when gels were performed under reducing conditions. The sole cysteine residue in alpha 1-proteinase inhibitor was reduced and alkylated with iodoacetamide. Trypsin complexes of the modified inhibitor were prepared and purified to homogeneity. Uptake and degradation studies demonstrated no differences in the results obtained with this modified complex as compared to unmodified alpha 1-proteinase inhibitor-trypsin complex. In addition, the high molecular weight disulfide interchange product was still present on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of solubilized cells. Clearance and clearance competition studies with alpha 1-proteinase inhibitor-trypsin, alkylated alpha 1-proteinase inhibitor-trypsin, antithrombin III-thrombin, and anti-thrombin III-factor IXa further demonstrated the shared hepatocyte uptake mechanism for all these complexes.  相似文献   

3.
The serpin antithrombin is a slow thrombin inhibitor that requires heparin to enhance its reaction rate. In contrast, alpha1-proteinase inhibitor (alpha1PI) Pittsburgh (P1 Met --> Arg natural variant) inhibits thrombin 17 times faster than pentasaccharide heparin-activated antithrombin. We present here x-ray structures of free and S195A trypsin-bound alpha1PI Pittsburgh, which show that the reactive center loop (RCL) possesses a canonical conformation in the free serpin that does not change upon binding to S195A trypsin and that contacts the proteinase only between P2 and P2'. By inference from the structure of heparin cofactor II bound to S195A thrombin, this RCL conformation is also appropriate for binding to thrombin. Reaction rates of trypsin and thrombin with alpha1PI Pittsburgh and antithrombin and their P2 variants show that the low antithrombin-thrombin reaction rate results from the antithrombin RCL sequence at P2 and implies that, in solution, the antithrombin RCL must be in a similar canonical conformation to that found here for alpha1PI Pittsburgh, even in the nonheparin-activated state. This suggests a general, limited, canonical-like interaction between serpins and proteinases in their Michaelis complexes.  相似文献   

4.
Inter-alpha-trypsin inhibitor was purified by a modification of published procedures which involved fewer steps and resulted in higher yields. The preparation was used to study the clearance of the inhibitor and its complex with trypsin from the plasma of mice and to examine degradation of the inhibitor in vivo. Unlike other plasma proteinase inhibitor-proteinase complexes, inter-alpha-trypsin inhibitor reacted with trypsin did not clear faster than the unreacted inhibitor. Studies using 125I-trypsin provided evidence for the dissociation of complexes of proteinase and inter-alpha-trypsin inhibitor in vivo, followed by rapid removal of proteinase by other plasma proteinase inhibitors, particularly alpha 2-macroglobulin and alpha 1-proteinase inhibitor. Studies in vitro also demonstrated the transfer of trypsin from inter-alpha-trypsin inhibitor to alpha 2-macroglobulin and alpha 1-proteinase inhibitor but at a much slower rate. The clearance of unreacted 125I-inter-alpha-trypsin inhibitor was characterized by a half-life ranging from 30 min to more than 1 h. Murine and human inhibitors exhibited identical behavior. Multiphasic clearance of the inhibitor was not due to degradation, aggregation, or carbohydrate heterogeneity, as shown by competition studies with asialoorosomucoid and macroalbumin, but was probably a result of extravascular distribution or endothelial binding. 125I-inter-alpha-trypsin inhibitor cleared primarily in the liver. Analysis of liver and kidney tissue by gel filtration chromatography and sodium dodecyl sulfate gel electrophoresis showed internalization and limited degradation of 125I-inter-alpha-trypsin inhibitor in these tissues. No evidence for the production of smaller proteinase inhibitors from 125I-inter-alpha-trypsin inhibitor injected intravenously or intraperitoneally was detected, even in casein-induced peritoneal inflammation. No species of molecular weight similar to that of urinary proteinase inhibitors, 19,000-70,000, appeared in plasma, liver, kidney, or urine following injection of inter-alpha-trypsin inhibitor.  相似文献   

5.
6.
Inactivation of alpha- and beta-thrombin by alpha 2-macroglobulin, by alpha 1-proteinase inhibitor and by antithrombin-III and heparin was studied. The amount of alpha- and beta-thrombin inactivated by antithrombin-III was proportional to the concentration of the inhibitor, but the inactivation rates of the two forms of thrombin were different. Heparin facilitated complex-formation between alpha-thrombin and antithrombin-III, whereas inactivation of beta-thrombin by antithrombin was only slightly influenced, even at a heparin concentration two orders of magnitude higher. alpha 2-Macroglobulin inhibited both alpha- and beta-thrombin activity similarly, i.e. the amount of alpha- and beta-thrombin inactivated as well as the rates of their inhibition were the same. alpha 1-Proteinase inhibitor also formed a complex with alpha- and beta-thrombin, similarly to antithrombin-III, although the inactivation of the enzyme needed high inhibitor concentration and long incubation time. These results suggest that the inactivation of beta-thrombin, if it occurs in the plasma, is also controlled by plasma inhibitors.  相似文献   

7.
Proteinase inhibitors of the serpin superfamily may exist in one of three distinct conformations: the native form, a fully active protein with the reactive site loop intact; the proteolytically modified form in which inhibitory capacity is abolished; and the proteinase-complexed form, a stable equimolar complex between the inhibitor and a target proteinase. Here, the specificity and kinetics of the plasma elimination of different serpin conformations are compared. Proteinase-complexed serpins were rapidly cleared from the circulation. However, the native and modified forms were not cleared rapidly, indicating that the receptor-mediated pathways which recognize the complexes fail to recognize the native and modified forms. This result suggests that significant structural differences exist between modified and proteinase-complexed serpins. The structural differences were probed by using transverse urea gradient gel electrophoresis, a technique that allows comparisons of the conformational stabilities of proteins. With the exception of the noninhibitory serpins ovalbumin and angiotensinogen, the modified and proteinase-complexed serpins were both stabilized thermodynamically compared to the native forms. In addition, the proteinase component of the serpin-proteinase complex was usually thermodynamically stabilized. These data are used to compare the conformations of serpin-proteinase complexes with those of native and modified serpins; they are discussed in terms of a model whereby serpins inhibit proteinases in a manner similar to that described for other types of protein inhibitors of serine proteinases.  相似文献   

8.
A series of potent inhibitors of angiotensin-converting enzyme (dipeptidyl carboxypeptidase, E.C. 3.4.15.1) derived from benzofused 1-carboxyalkyl-3-(1-carboxy-3-phenyl-propylamino) lactams (III) is described. In the most effective inhibitors (I50 2-4 X 10(-9)M) the lactam is 7 or 8 membered and the N-1 side chain is carboxymethyl or carboxyethyl. Conformational and steric factors pertinent to binding to the enzyme are discussed.  相似文献   

9.
alpha 1-Antichymotrypsin mRNA was isolated by specific polysome immunoprecipitation from turpentine-treated baboon liver. The highly enriched mRNA was used for synthesis and cloning of the corresponding cDNA. Baboon alpha 1-antichymotrypsin cDNA clones were identified by hybrid-selected translation, and the insert DNA fragment from one of the putative clones was used as a probe to screen a human liver cDNA library comprised of 40 000 independent transformants. One of the human cDNA clones was unambiguously identified to contain alpha 1-antichymotrypsin DNA sequences by comparison of its 5'-terminal nucleotide sequence with the N-terminal amino acid sequence of the protein. This cDNA clone, designated phACT235, contains 1524 base pairs of human DNA, which was sequenced in its entirety. The inserted DNA codes for a 25 amino acid signal peptide sequence and the entire mature alpha 1-antichymotrypsin of 408 amino acid residues. Comparison of the amino acid sequence of alpha 1-antichymotrypsin with that of the human alpha 1-antitrypsin has revealed a homology level similar to that between chymotrypsin and trypsin.  相似文献   

10.
The three-dimensional structures of chymotrypsin- and methylamine-treated negatively stained human alpha 2-macroglobulin have been determined by weighted back projection from electron microscope data. Projections of the reconstructions show good concordance with two-dimensional averages of both stained and frozen-hydrated molecules. The reconstructions reveal that the H-shaped front projection of the molecule is related to the smaller ellipsoidal end view by a rotation of 90 degrees about the crossbar (minor axis) of the H. This finding is in agreement with tilt studies. The reconstruction of the alpha 2-macroglobulin-methylamine reveals an hour-glass shaped void which is filled by the two proteinase molecules in the reconstruction of alpha 2-macroglobulin-chymotrypsin. Protein plugs which appear to block the exterior entrances to the cavity may function to prevent access of proteins to the encapsulated proteinase and serve to block its escape. Extensive thresholding of each reconstruction leaves a "backbone" consisting of two side-by-side rod-like structures, suggesting that this is the arrangement of the two protomeric units which form the molecule. Both structures show some departure from the expected symmetry. The asymmetries are robust features of the reconstructions and may reflect structurally asymmetric features of the transformation from the native to the chymotrypsin-treated form of the molecule.  相似文献   

11.
M Davril  A Laine    A Hayem 《The Biochemical journal》1987,245(3):699-704
Several intermediates in the reaction of 2-methylglutamate with glutamate decarboxylase from Escherichia coli were detected by stopped-flow spectrophotometry and by rapid-scanning spectrophotometry after conventional mixing. Structures were assigned to intermediates on the basis of kinetic and spectral evidence. In the early stages of the reaction an intermediate with the properties expected of a geminal diamine accumulated significantly. Changes consistent with the conversion of this species into the external aldimine were also observed. The course of product formation was determined and linked with spectral changes taking place in the bound coenzyme. The effect of the minor decarboxylation-dependent transamination that accompanies the major reaction was analysed.  相似文献   

12.
Qualitative studies of lung lavage alpha 1-proteinase inhibitor   总被引:3,自引:0,他引:3  
A method is described which enables identification of the molecular size of alpha 1-proteinase inhibitor (alpha 1-PI) in biological fluids. This technique when applied to bronchoalveolar lavage fluids clearly demonstrates alpha 1-PI in three molecular forms; the native molecule (Mr approximately equal to ++54 000), a partially proteolysed form (Mr approximately equal to 49 000) and in a form suggestive of a complex with enzyme (Mr approximately equal to 82 000). Samples showing the presence of native alpha 1-PI inhibited more porcine pancreatic elastase than samples where no native alpha 1-PI was seen or where the predominant form was partially proteolysed alpha 1-PI (p less than 0.01). Although the predominant band of alpha 1-PI was more frequently the partially proteolysed form in current smokers (p less than 0.01), there was no clear difference in the inhibitory function of alpha 1-PI between current smokers and non-smokers and those with and without airflow obstruction.  相似文献   

13.
K Steube  V Gross  P C Heinrich 《Biochemistry》1985,24(20):5587-5592
The glycosidase endo-beta-N-acetylglucosaminidase F (endo F) from Flavobacterium meningosepticum was used for the deglycosylation of rat alpha 1-proteinase inhibitor (alpha 1 PI). alpha 1 PI containing three oligosaccharide side chains of the complex type was isolated from rat serum or from the medium of rat hepatocyte primary cultures. High-mannose-type alpha 1 PI or hybrid-type alpha 1 PI was isolated from the media of hepatocytes treated with 1-deoxymannojirimycin or swainsonine, respectively. The susceptibility of complex-type alpha 1 PI to endo F was studied in the presence of various detergents. 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate and octyl glucopyranoside turned out to be most effective. In the absence of detergents, digestion of alpha 1 PI with high concentrations of endo F and/or long times of incubation led to the formation of alpha 1 PI with one and two oligosaccharide side chains. In the presence of 0.5% octyl glucopyranoside, the major cleavage products were unglycosylated alpha 1 PI and alpha 1 PI carrying one carbohydrate side chain. In contrast to the complex-type alpha 1 PI, the high-mannose type can be totally deglycosylated by endo F even in the absence of detergents. The susceptibility of the hybrid-type alpha 1 PI to endo F is between that of the complex and the high-mannose types.  相似文献   

14.
The dominating inhibitor of leukocyte elastase in human respiratory tract secretions is a low molecular mass inhibitor, designated antileukoproteinase. An equimolar antileukoproteinase-elastase complex was produced and subjected to gel filtration after differing time intervals and was found to be stable. On addition to human serum, however, elastase dissociated from antileukoproteinase and formed a complex with alpha 1-proteinase inhibitor. A small amount of elastase was also found bound to alpha 2-macroglobulin. Antileukoproteinase was capable of inhibiting elastase bound to alpha 2-macroglobulin. This inhibition was more complete and more rapid when the alpha 2-macroglobulin-elastase complex was in a molar ratio of 1:1 than in a ratio of 1:2.  相似文献   

15.
Serpins encompass a superfamily of proteinase inhibitors that regulate many of the serine proteinases involved in inflammation and hemostasis. In vitro, many serpins are catalytically inactivated by proteinases that they do not inhibit, leading to the concept of proteolytic down-regulation of serpin inhibitory capacity. The extent to which down-regulation of serpin activity occurs in vivo is debated, since little is known of the rates at which the process occurs. To address this debate, we have measured the rates of inactivation of three serpins, alpha 1-proteinase inhibitor (alpha 1PI), alpha 1-antichymotrypsin (alpha 1ACT), and antithrombin III (ATIII), by three human matrix metalloproteinases (MMPs-1, -2, and -3) thought to be involved in tissue destruction and repair. Our object was to establish a working kinetic model which can be used to predict whether serpin inactivation by these proteinases is likely to occur in vivo. We determined the rates of inactivation of these three serpins by each of the MMPs and compared these to rates of inhibition of the MMPs by an endogenous inhibitor, alpha 2-macroglobulin. An equation designed to predict the extent of substrate hydrolyzed by an enzyme in the presence of an enzyme inhibitor gave the following predictions of the inactivation in vivo: (i) ATIII is unlikely to be inactivated by the MMPs. (ii) MMP-2 (72-kDa gelatinase/type IV collagenase) is unlikely to inactivate any of the three serpins. (iii) MMP-1 (tissue collagenase) will inactivate alpha 1PI and alpha 1ACT only when its concentration saturates that of its controlling inhibitors. (iv) MMP-3 (stromelysin) may inactivate small amounts of alpha 1PI and more significant amounts of alpha 1ACT, even in the presence of its controlling inhibitors. Any physiologic or pathologic inactivation of these serpins by these MMPs that occurs in vivo will probably be due to MMP-3, and will likely only take place in tissues and inflammatory loci where the concentration of MMP inhibitors is depressed.  相似文献   

16.
17.
Dog alpha 1-proteinase inhibitor (alpha 1-PI) was found to be an effective inhibitor of bovine chymotrypsin and also of porcine pancreatic elastase as in the case of human inhibitor. The dog inhibitor inactivated both proteinases at a molar ratio of 1:1. However, compared to the human inhibitor, dog alpha 1-PI was a relatively poor inhibitor of bovine trypsin. The association rate constants (kass) of the interactions of dog alpha 1-PI with bovine chymotrypsin and with porcine elastase were determined to be 6.9 +/- 0.3 X 10(6) M-1 s-1 and 6.4 +/- 0.1 X 10(5) M-1 s-1, respectively. These values are 1.3- and 2.7-fold higher than the corresponding values for the human inhibitor. On the other hand, kass for the dog inhibitor with bovine trypsin (2.6 +/- 0.3 X 10(4)M-1 s-1) was found to be about 5 times smaller than that of the human inhibitor.  相似文献   

18.
Mononuclear phagocytes are a bone-marrow-derived subgroup of white blood cells which circulate as monocytes and, after differentiation into macrophages, become resident in many tissues. By synthesizing the important proteinase inhibitors alpha 2-macroglobulin and alpha 1-proteinase inhibitor mononuclear phagocytes contribute to the control of proteolysis both in blood and tissues. Applying a culture system which enables human blood monocytes to differentiate into macrophages in vitro, synthesis of alpha 2-macroglobulin and alpha 1-proteinase inhibitor was studied. The normal course of monocyte-macrophage maturation is accompanied by a strong increase of specific alpha 2-macroglobulin synthesis and a concomitant slight decrease of alpha 1-proteinase inhibitor. alpha 2-Macroglobulin can be designated as a marker protein of the monocyte/macrophage differentiation. Endotoxin (Salmonella typhi) in a concentration as low as 100 ng/ml strongly represses alpha 2-macroglobulin synthesis both in monocytes and macrophages. Furthermore, endotoxin completely abolishes the induction of alpha 2-macroglobulin synthesis during the course of normal monocyte in vitro cultivation, indicating that endotoxin is a strong inhibitor of the monocyte-macrophage maturation. In contrast to alpha 2-macroglobulin, alpha 1-proteinase inhibitor synthesis is strongly stimulated by endotoxin in monocytes as well as in macrophages.  相似文献   

19.
Patients homozygous for the Z mutant form of alpha1-proteinase inhibitor (alpha1-PI) have an increased risk for the development of liver disease because of the accumulation in hepatocytes of inclusion bodies containing linear polymers of mutant alpha1-PI. The most widely accepted model of polymerization proposes that a linear, head-to-tail polymer forms by sequential insertion of the reactive center loop (RCL) of one alpha1-PI monomer between the central strands of the A beta-sheet of an adjacent monomer. This model derives primarily from two observations: peptides that are homologous with the RCL insert into the A beta-sheet of alpha1-PI monomer and this insertion prevents alpha1-PI polymerization. Normal alpha1-PI monomer does not spontaneously polymerize; however, here we show that the disulfide-linked dimer of normal alpha1-PI spontaneously forms linear polymers in buffer. The monomers within this dimer are joined head-to-head. Thus, the arrangement of monomers in these polymers must be different from that predicted by the loop-A sheet model. Therefore, we propose a new model for alpha1-PI polymer. In addition, polymerization of disulfide-linked dimer is not inhibited by the presence of the peptide even though dimer appears to interact with the peptide. Thus, RCL insertion into A beta-sheets may not occur during polymerization of this dimer.  相似文献   

20.
At pH 8.0 and 25 degrees C alpha 1-proteinase inhibitor and alpha 2-macroglobulin bind human pancreatic elastase with rate constants of 4.7.10(5) M-1.s-1 and 6.4.10(6) M-1.s-1, respectively. The corresponding delay times of elastase inhibition in plasma are 0.4 s and 0.2 s, respectively, indicating that both inhibitors may act as physiological antielastases. Elastin impairs the elastase inhibitory capacity of alpha 1-proteinase inhibitor and alpha 2-macroglobulin. In presence of human elastin, the former behaves like a slow-binding elastase inhibitor, with a rate constant of about 260 M-1.s-1. In contrast, alpha 2-macroglobulin is a fast-binding inhibitor of elastin-bound elastase, but only one of its two sites is functioning in presence of elastin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号