首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Qin PZ  Hideg K  Feigon J  Hubbell WL 《Biochemistry》2003,42(22):6772-6783
Site-directed spin labeling utilizes site-specific attachment of a stable nitroxide radical to probe the structure and dynamics of macromolecules. In the present study, a 4-thiouridine base is introduced at each of six different positions in a 23-nucleotide RNA molecule. The 4-thiouridine derivatives were subsequently modified with one of three methanethiosulfonate nitroxide reagents to introduce a spin label at specific sites. The electron paramagnetic resonance spectra of the labeled RNAs were analyzed in terms of nitroxide motion and the RNA solution structure. At a base-paired site in the RNA helix, where the nitroxide has weak or no local interactions, motion of the nitroxide is apparently dominated by rotation about bonds within the probe. The motion is similar to that found for a structurally related probe on helical sites in proteins, suggesting a similar mode of motion. At other sites that are hydrogen bonded and stacked within the helix, local interactions within the RNA molecule modulate the nitroxide motion in a manner consistent with expectations based on the known structure. For a base that is not structurally constrained, the mobility is higher than at any other site, presumably due to motion of the base itself. These results demonstrate the general utility of the 4-thiouridine/methanethiosulfonate coupling method to introduce nitroxide spin labels into RNA and the ability of the resulting label to probe local structure and dynamics.  相似文献   

3.
Multifrequency electron paramagnetic resonance (EPR), combined with site-directed spin labeling, is a powerful spectroscopic tool to characterize protein dynamics. The lineshape of an EPR spectrum reflects combined rotational dynamics of the spin probe's local motion within a protein, reorientations of protein domains, and overall protein tumbling. All these motions can be restricted and anisotropic, and separation of these motions is important for thorough characterization of protein dynamics. Multifrequency EPR distinguishes between different motions of a spin-labeled protein, due to the frequency dependence of EPR resolution to fast and slow motion of a spin probe. This gives multifrequency EPR its unique capability to characterize protein dynamics in great detail. In this review, we analyze what makes multifrequency EPR sensitive to different rates of spin probe motion and discuss several examples of its usage to separate spin probe dynamics and overall protein dynamics, to characterize protein backbone dynamics, and to resolve protein conformational states.  相似文献   

4.
5.
Identifying conformational changes with site-directed spin labeling   总被引:16,自引:0,他引:16  
Site-direct spin labeling combined with electron paramagnetic resonance (EPR) spectroscopy is a powerful tool for detecting structural changes in proteins. This review provides examples that illustrate strategies for interpreting the data in terms of specific rearrangements in secondary and tertiary structure. The changes in the mobility and solvent accessibility of the spin label side chains, and in the distances between spin labels, report (i) rigid body motions of alpha-helices and beta-strands (ii) relative movements of domains and (iii) changes in secondary structure. Such events can be monitored in the millisecond time-scale, making it possible to follow structural changes during function. There is no upper limit to the size of proteins that can be investigated, and only 50-100 picomoles of protein are required. These features make site-directed spin labeling an attractive approach for the study of structure and dynamics in a wide range of systems.  相似文献   

6.
Site-directed spin labeling has become a popular biophysical tool for the characterization of protein structure, dynamics and conformational change. This method is well suited and widely used to study small soluble proteins, membrane proteins and large protein complexes. Recent advances in site-directed spin labeling methodology have occurred in two areas. The first involves an understanding of the conformations and local dynamics of the spin-labeled sidechain, including the features of proteins that influence electron paramagnetic resonance lineshape. The second advance is the application of pulse techniques to determine long-range distances and distance distributions in proteins. During the past two years, these technical developments have been used to address several important problems concerning the molecular function of proteins.  相似文献   

7.
Site-directed spin labeling and pulsed electron–electron double resonance (PELDOR or DEER) have previously been applied successfully to study the structure and dynamics of nucleic acids. Spin labeling nucleic acids at specific sites requires the covalent attachment of spin labels, which involves rather complicated and laborious chemical synthesis. Here, we use a noncovalent label strategy that bypasses the covalent labeling chemistry and show that the binding specificity and efficiency are large enough to enable PELDOR or DEER measurements in DNA duplexes and a DNA duplex bound to the Lac repressor protein. In addition, the rigidity of the label not only allows resolution of the structure and dynamics of oligonucleotides but also the determination of label orientation and protein-induced conformational changes. The results prove that this labeling strategy in combination with PELDOR has a great potential for studying both structure and dynamics of oligonucleotides and their complexes with various ligands.  相似文献   

8.
The method of site-directed spin labeling (SDSL) utilizes a stable nitroxide radical to obtain structural and dynamic information on biomolecules. Measuring dipolar interactions between pairs of nitroxides yields internitroxide distances, from which quantitative structural information can be derived. This study evaluates SDSL distance measurements in RNA using a nitroxide probe, designated as R5, which is attached in an efficient and cost-effective manner to backbone phosphorothioate sites that are chemically substituted in arbitrary sequences. It is shown that R5 does not perturb the global structure of the A-form RNA helix. Six sets of internitroxide distances, ranging from 20 to 50 A, were measured on an RNA duplex with a known X-ray crystal structure. The measured distances strongly correlate (R(2) = 0.97) with those predicted using an efficient algorithm for determining the expected internitroxide distances from the parent RNA structure. The results enable future studies of global RNA structures for which high-resolution structural data are absent.  相似文献   

9.
Site-directed spin labeling and EPR spectroscopy were used to map two consecutive beta-strands of the putative transmembrane beta-barrel of BtuB. For these studies, a series of 29 consecutive single cysteine mutants of BtuB were produced covering residues 148-176. The proteins were then expressed, reacted with a sulfhydryl-specific spin label, purified in octyl glucoside (OG), and reconstituted into palmitoyloleoylphosphatidylcholine (POPC) bilayers. The labeled residues spanned from the extracellular region (position 148) to the small periplasmic loop (positions 160-163) and back up to the extracellular side (position 176) of BtuB. Continuous wave power saturation in the presence of oxygen or NiAA yielded an i, i + 2 periodicity for the collision frequencies at these sites and demonstrated the presence of a beta-strand structural motif. For both strands studied, the even-numbered residues were found to be exposed to the hydrophobic phase of the bilayer, whereas the odd-numbered residues pointed toward the interior of the barrel and the core of the protein. In addition, the collision parameters yielded the position of the protein within the bilayer. The phase relationship between the oxygen and metal collision frequencies along with the corresponding membrane depth parameters, Phi, indicates that segments 151-159 and 164-172 are within the bilayer. In POPC bilayers, there is a mobility gradient for spin labels along the barrel indicating enhanced backbone flexibility toward the periplasmic surface of the barrel. In POPC/OG mixed micelles, the even-numbered residues facing the hydrocarbon show an increased mobility compared with the bilayer environment whereas the inward-facing side chains show little change in motion. The data indicate that the protein core remains folded in POPC/OG mixed micelles but that this environment increases the backbone fluctuations of the strands. A model for the beta-barrel of BtuB is presented in part on the basis of these EPR data.  相似文献   

10.
Site-directed mutagenesis was used to produce 27 single cysteine mutants of bacteriophage M13 major coat protein spanning the whole primary sequence of the protein. Single-cysteine mutants were labeled with nitroxide spin labels and incorporated into phospholipid bilayers with increasing acyl chain length. The SDSL is combined with ESR and CD spectroscopy. CD spectroscopy provided information about the overall protein conformation in different mismatching lipids. The spin label ESR spectra were analyzed in terms of a new spectral simulation approach based on hybrid evolutionary optimization and solution condensation. This method gives the residue-level free rotational space (i.e., the effective space within which the spin label can wobble) and the diffusion constant of the spin label attached to the protein. The results suggest that the coat protein has a large structural flexibility, which facilitates a stable protein-to-membrane association in lipid bilayers with various degrees of hydrophobic mismatch.  相似文献   

11.
The misfolding and fibril formation of alpha-synuclein plays an important role in neurodegenerative diseases such as Parkinson disease. Here we used electron paramagnetic resonance spectroscopy, together with site-directed spin labeling, to investigate the structural features of alpha-synuclein fibrils. We generated fibrils from a total of 83 different spin-labeled derivatives and observed single-line, exchange-narrowed EPR spectra for the majority of all sites located within the core region of alpha-synuclein fibrils. Such exchange narrowing requires the orbital overlap between multiple spin labels in close contact. The core region of alpha-synuclein fibrils must therefore be arranged in a parallel, in-register structure wherein same residues from different molecules are stacked on top of each other. This parallel, in-register core region extends from residue 36 to residue 98 and is tightly packed. Only a few sites within the core region, such as residues 62-67 located at the beginning of the NAC region, as well as the N- and C-terminal regions outside the core region, are significantly less ordered. Together with the accessibility measurements that suggest the location of potential beta-sheet regions within the fibril, the data provide significant structural constraints for generating three-dimensional models. Furthermore, the data support the emerging view that parallel, in-register structure is a common feature shared by a number of naturally occurring amyloid fibrils.  相似文献   

12.
13.
A 30-residue nitroxide scan encompassing a helical hairpin and an extended loop in soluble annexin 12 (helices D and E in repeat 2; residues 134-163) has been analyzed in terms of nitroxide side chain mobility and accessibility to collision with paramagnetic reagents (Pi). Values of Pi for both O(2) and a Ni(II) metal complex (NiEDDA) are remarkably well correlated with the fractional solvent accessibility of the native side chains at the corresponding positions computed from the known crystal structure. This result demonstrates the utility of Pi as an experimental measure of side chain accessibility in solution, as well as the lack of structural perturbation due to the presence of the nitroxide side chain. The pattern of side chain mobility is also in excellent agreement with predictions from the crystal structure. The results presented here extend the correlations between mobility and structure described in earlier work on other helical proteins, and suggest their generality. The periodic dependence of Pi and mobility along the sequence of annexin 12 reveals the helical segments and their orientation in the fold, as expected for a nonperturbing nitroxide side chain. However, these data do not distinguish the helix-loop-helix motif from a continuous helix, because immobilized side chains in the short loop sequence maintain the periodicity. As shown here, the ratio of Pi values for O(2) and NiEDDA clearly delineates the loop region, due to size exclusion effects between the two reagents. A new feature evident in a nitroxide scan through multiple secondary elements is a modulation of the basic Pi and mobility patterns along the sequence, apparently due to differences in helix packing and backbone motion. Thus, in the short helix D, residues are consistently more mobile and accessible throughout the sequence compared to the residues in the longer, less-solvated and more ordered helix E.  相似文献   

14.
Despite its importance in Parkinson's disease, a detailed understanding of the structure and mechanism of alpha-synuclein fibril formation remains elusive. In this study, we used site-directed spin labeling and electron paramagnetic resonance spectroscopy to study the structural features of monomeric and fibrillar alpha-synuclein. Our results indicate that monomeric alpha-synuclein, in solution, has a highly dynamic structure, in agreement with the notion that alpha-synuclein is a natively unfolded protein. In contrast, fibrillar aggregates of alpha-synuclein exhibit a distinct domain organization. Our data identify a highly ordered and specifically folded central core region of approximately 70 amino acids, whereas the N terminus is structurally more heterogeneous and the C terminus ( approximately 40 amino acids) is completely unfolded. Interestingly, the central core region of alpha-synuclein exhibits several features reminiscent of those observed in the core region of fibrillar Alzheimer's amyloid beta peptide, including an in-register parallel structure. Although the lengths of the respective core regions differ, fibrils from different amyloid proteins nevertheless appear to be able to take up highly similar, and possibly conserved, structures.  相似文献   

15.
We describe a simple experimental approach for the rapid determination of protein global folds. This strategy utilizes site-directed spin labeling (SDSL) in combination with isotope enrichment to determine long-range distance restraints between amide protons and the unpaired electron of a nitroxide spin label using the paramagnetic effect on relaxation rates. The precision and accuracy of calculating a protein global fold from only paramagnetic effects have been demonstrated on barnase, a well-characterized protein. Two monocysteine derivatives of barnase, (H102C) and (H102A/Q15C), were 15N enriched, and the paramagnetic nitroxide spin label, MTSSL, attached to the single Cys residue of each. Measurement of amide 1H longitudinal relaxation times, in both the oxidized and reduced states, allowed the determination of the paramagnetic contribution to the relaxation processes. Correlation times were obtained from the frequency dependence of these relaxation processes at 800, 600, and 500 MHz. Distances in the range of 8 to 35 A were calculated from the magnitude of the paramagnetic contribution to the relaxation processes and individual amide 1H correlation times. Distance restraints from the nitroxide spin to amide protons were used as restraints in structure calculations. Using nitroxide to amide 1H distances as long-range restraints and known secondary structure restraints, barnase global folds were calculated having backbone RMSDs <3 A from the crystal structure. This approach makes it possible to rapidly obtain the overall topology of a protein using a limited number of paramagnetic distance restraints.  相似文献   

16.
SNARE (soluble NSF acceptor protein receptor) proteins are thought to mediate membrane fusion by assembling into heterooligomeric complexes that connect the fusing membranes and initiate the fusion reaction. Here we used site-directed spin labeling to map conformational changes that occur upon homo- and heterooligomeric complex formation of neuronal SNARE proteins. We found that the soluble domains of synaptobrevin, SNAP-25, and syntaxin 1 are unstructured. At higher concentrations, the SNARE motif of syntaxin 1 forms homooligomeric helical bundles with at least some of the alpha-helices aligned in parallel. In the assembled SNARE complex, mapping of thirty side chain positions yielded spectra which are in good agreement with the recently published crystal structure. The loop region of SNAP-25 that connects the two SNARE motifs is largely unstructured. C-terminal truncation of synaptobrevin resulted in complexes that are completely folded N-terminal of the truncation but become unstructured at the C-terminal end. The binary complex of syntaxin and SNAP-25 consists of a parallel four helix-bundle with properties resembling that of the ternary complex.  相似文献   

17.
Columbus L  Hubbell WL 《Biochemistry》2004,43(23):7273-7287
In site-directed spin labeling, a nitroxide-containing side chain is introduced at selected sites in a protein. The EPR spectrum of the labeled protein encodes information about the motion of the nitroxide on the nanosecond time scale, which has contributions from the rotary diffusion of the protein, from internal motions in the side chain, and from backbone fluctuations. In the simplest model for the motion of noninteracting (surface) side chains, the contribution from the internal motion is sequence independent, as is that from protein rotary diffusion. Hence, differences in backbone motions should be revealed by comparing the sequence-dependent motions of nitroxides at structurally homologous sites. To examine this model, nitroxide side chains were introduced, one at a time, along the GCN4-58 bZip sequence, for which NMR (15)N relaxation experiments have identified a striking gradient of backbone mobility along the DNA-binding region [Bracken et al. (1999) J. Mol. Biol. 285, 2133]. Spectral simulation techniques and a simple line width measure were used to extract dynamical parameters from the EPR spectra, and the results reveal a mobility gradient similar to that observed in NMR relaxation, indicating that side chain motions mirror backbone motions. In addition, the sequence-dependent side chain dynamics were analyzed in the DNA/protein complex, which has not been previously investigated by NMR relaxation methods. As anticipated, the backbone motions are damped in the DNA-bound state, although a gradient of motion persists with residues at the DNA-binding site being the most highly ordered, similar to those of helices on globular proteins.  相似文献   

18.
19.
Site-directed spin labeling (SDSL), the site-specific incorporation of nitroxide spin-labels into a protein, has allowed us to investigate ligand-induced conformational changes in the ligand-binding domain of human estrogen receptor alpha (hERalpha-LBD). EPR (electron paramagnetic resonance) spectroscopy of the nitroxide probe attached to ER produces different spectra depending upon the identity of the bound ligand; these differences are indicative of changes in the type and degree of motional character of the spin-label induced by different ligand-induced conformations of labeled ER. Visual inspection of EPR spectra, construction of B versus C cross-correlation plots, and cross-comparison of spectral pairs using a relative squared difference (RSD) calculation allowed receptor-ligand complexes to be profiled according to their conformational character. Plotting B and C parameters allowed us to evaluate the liganded receptor according to the motional characteristics of the attached spin-label, and they were particularly illustrative for the receptor labeled at position 530, which had motion between the fast and intermediate regimes. RSD analysis allowed us to directly compare the similarity or difference between two different spectra, and these comparisons produced groupings that paralleled those seen in B versus C cross-correlation plots, again relating meaningfully with the pharmacological nature of the bound ligand. RSD analysis was also particularly useful for qualifying differences seen with the receptor labeled at position 417, which had motion between the intermediate and slow motional regimes. This work demonstrates that B and C formulas from EPR line shape theory are useful for qualitative analysis of spectra with differences subtler than those that are often analyzed by EPR spectroscopists. This work also provides evidence that the ER can exist in a range of conformations, with specific conformations resulting from preferential stabilization of ER by the bound ligand. Furthermore, it documents the complexity and uniqueness of the ligand-receptor structure, and highlights the fact that structural differences exist between the receptor bound with ligands of different pharmacological character that, nevertheless, produce similar crystal structures.  相似文献   

20.
Lu D  Liu Z  Wu J 《Biophysical journal》2006,90(9):3224-3238
Proteins fold in a confined space not only in vivo, i.e., folding assisted by molecular chaperons and chaperonins in a crowded cellular medium, but also in vitro as in production of recombinant proteins. Despite extensive work on protein folding in bulk, little is known about how and to what extent the thermodynamics and kinetics of protein folding are altered by confinement. In this work, we use a Gō-like off-lattice model to investigate the folding and stability of an all beta-sheet protein in spherical cages of different sizes and surface hydrophobicity. We find whereas extreme confinement inhibits correct folding, a hydrophilic cage stabilizes the protein due to restriction of the unfolded configurations. In a hydrophobic cage, however, strong attraction from the cage surface destabilizes the confined protein because of competition between self-aggregation and adsorption of hydrophobic residues. We show that the kinetics of protein collapse and folding is strongly correlated with both the cage size and the surface hydrophobicity. It is demonstrated that a cage of moderate size and hydrophobicity optimizes both the folding yield and kinetics of structural transitions. To support the simulation results, we have also investigated the refolding of hen-egg lysozyme in the presence of cetyltrimethylammoniumbromide (CTAB) surfactants that provide an effective confinement of the proteins by micellization. The influence of the surfactant hydrophobicity on the structural and biological activity of the protein is determined with circular dichroism spectrum, fluorescence emission spectrum, and biological activity assay. It is shown that, as predicted by coarse-grained simulations, CTAB micelles facilitate the collapse of denatured lysozyme, whereas the addition of beta-cyclodextrin-grafted-PNIPAAm, a weakly hydrophobic stripper, dissociates CTAB micelles and promotes the conformational rearrangement and thereby gives an improved recovery of lysozyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号