首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fischer rat fibroblasts transformed by polyoma virus contain, in addition to viral sequences integrated into the host genome, nonintegrated viral DNA molecules, whose presence is under the control of the viral A gene. To understand the mechanism of production of the "free" viral DNA, we have characterized the DNA species produced by several rat lines transformed by wild-type virus or by ts-a polyoma virus and compared them with the integrated viral sequences. Every cell line tested yielded a characteristic number of discrete species of viral DNA. The presence of defectives was a very common occurrence, and these molecules generally carried deletions mapping in the viral "late" region. The production of multiple species of free viral DNA was not due to heterogeneity of the transformed rat cell population, and its pattern did not change upon fusion with permissive mouse cells. Analysis of the integrated viral DNA sequences in the same cell lines showed, in most cases, a full head-to-tail tandem arrangement of normal-size and defective molecules. The free DNA produced by these lines faithfully reflected the integrated species. This was true also in the case of a cell line which contained a viral insertion corresponding to approximately 1.3 polyoma genomes, with each of the repeated portions of the viral DNA molecule carrying a different-size deletion. These results support the hypothesis that the free DNA derives from the integrated form through a mechanism of homologous recombination leading to excision and limited replication.  相似文献   

2.
Michaël Katinka 《Biochimie》1984,66(11-12):681-691
Two defective polyoma virus genomes, deleted in the nucleotide sequences coding the N-termini of the tumor antigens, were introduced into Fisher 3T3 rat cells by DNA-mediated gene transfer (transfection). The resulting integrated genomes were incapable of conferring a transformed phenotype to the cells. However, after transfection of these lines with small polyoma fragments overlapping the deleted sequences, transformed clones were isolated. These clones were analyzed by Southern genomic blot hybridization and by isolation in E. coli of plasmids containing viral sequences excised following fusion with mouse polyoma growth-permissive cells. In all cases at least one intact copy of the early region of the polyoma genome was found. Furthermore, restriction sites adjacent to the initial inactive insertion remained unchanged in many of the transformed lines. These results show that functional restoration of the defective polyoma early region involves homologous recombination between the deleted viral genomes integrated in the cellular DNA and the transfecting viral fragments.  相似文献   

3.
L Lania  A Hayday    M Fried 《Journal of virology》1981,39(2):422-431
We have analyzed the state, arrangement, and expression of polyoma viral DNA sequences in a number of in vitro-transformed Fischer rat cells before and after growth in vivo as tumour cells. When the in vitro lines used to induce the tumors contained only a single insert of viral sequences and did not produce either a full-size 100,000-dalton (100K) large T-antigen or free viral genomes, no differences in the above-mentioned properties were observed. By contrast, in vitro cell lines containing multiple inserts of viral sequences, a functional 100K large T-antigen, and free viral genome induced tumor cells which displayed a reduced number of inserts of viral sequences and which did not produce either a functional 100K large T-antigen or free viral genomes. All of the in vitro lines and their tumor cell derivatives expressed the polyoma virus 55K middle and 22K small T-antigen species. Possible mechanisms for the selection in vivo against cells containing a functional 100K large T-antigen and consequently free viral genomes are discussed.  相似文献   

4.
C Basilico  S Gattoni  D Zouzias  G D Valle 《Cell》1979,17(3):645-659
Rat cells transformed by polyoma virus contain, in addition to integrated viral DNA, a small number of nonintegrated viral DNA molecules. The free viral DNA originates from the integrated form through a spontaneous induction of viral DNA replication in a minority of the cell population. Its presence is under the control of the viral A locus. To determine whether the induction of free viral DNA replication was accompanied by a loss of integrated viral DNA molecules in a phenomenon similar to the "curing" of lysogenic bacteria, we selected for revertants arising in the transformed rat populations and determined whether these cells had lost integrated viral genomes. We further investigated whether the viral A function was necessary for "curing" by determining the frequency of cured cells in populations of rat cells transformed by the ts-a mutant of polyoma virus following propagation at the permissive or nonpermissive temperature. A large proportion of the revertants isolated were negative or weakly positive when assayed by immunofluorescence for polyoma T antigen and were unable to produce infectious virus upon fusion with permissive mouse cells. The T antigen-negative, virus rescue-negative clones can be retransformed by superinfection and appear to have lost a considerable proportion of integrated viral DNA sequences. Restriction enzyme analysis of the integrated viral DNA sequences shows that the parental transformed lines contain tandem repeats of integrated viral molecules, and that this tandem arrangement is generally lost in the cured derivatives. While cells transformed by wild-type virus undergo "curing" with about the same frequency at 33 degrees or 39 degrees C, cells transformed by the ts-a mutant contain a much higher frequency of cured cells after propagation at 33 degrees than at 39 degrees C. Our results indicate that in polyoma-transformed rat cells, loss of integrated viral DNA can occur at a rather high rate, producing (at least in some cases) cells which have reverted partially or completely to a normal phenotype. Loss of integrated viral DNA is never total and appears to involve an excision event. The polyoma A function (large T antigen) is necessary for such excision to occur. In the absence of a functional A gene product, the association of the viral DNA with the host DNA appears to be very stable.  相似文献   

5.
EcoRI fragments containing integrated viral and adjacent host sequences were cloned from two polyoma virus-transformed cell lines (7axT and 7axB) which each contain a single insert of polyoma virus DNA. Cloned DNA fragments which contained a complete coding capacity for the polyoma virus middle and small T-antigens were capable of transforming rat cells in vitro. Analysis of the flanking sequences indicated that rat DNA had been reorganized or deleted at the sites of polyoma virus integration, but none of the hallmarks of retroviral integration, such as the duplication of host DNA, were apparent. There was no obvious similarity of DNA sequences in the four virus-host joins. In one case the virus-host junction sequence predicted the virus-host fusion protein which was detected in the transformed cell line. DNA homologous to the flanking sequences of three out of four of the joins was present in single copy in untransformed cells. One copy of the flanking host sequences existed in an unaltered form in the two transformed cell lines, indicating that a haploid copy of the viral transforming sequences is sufficient to maintain transformation. The flanking sequences from one cell line were further used as a probe to isolate a target site (unoccupied site) for polyoma virus integration from uninfected cellular DNA. The restriction map of this DNA was in agreement with that of the flanking sequences, but the sequence of the unoccupied site indicated that viral integration did not involve a simple recombination event between viral and cellular sequences. Instead, sequence rearrangements or alterations occurred immediately adjacent to the viral insert, possibly as a consequence of the integration of viral DNA.  相似文献   

6.
We have examined the arrangement of integrated avian sarcoma virus (ASV) DNA sequences in several different avian sarcoma virus transformed mammalian cell lines, in independently isolated clones of avian sarcoma virus transformed rat liver cells, and in morphologically normal revertants of avian sarcoma virus transformed rat embryo cells. By using restriction endonuclease digestion, agarose gel electrophoresis, Southern blotting, and hybridization with labeled avian sarcoma virus complementary DNA probes, we have compared the restriction enzyme cleavage maps of integrated viral DNA and adjacent cellular DNA sequences in four different mouse and rat cell lines transformed with either Bratislava 77 or Schmidt-Ruppin strains of avian sarcoma virus. The results of these experiments indicated that the integrated viral DNA resided at a different site within the host cell genome in each transformed cell line. A similar analysis of several independently derived clones of Schmidt-Ruppin transformed rat liver cells also revealed that each clone contained a unique cellular site for the integration of proviral DNA. Examination of several morphologically normal revertants and spontaneous retransformants of Schmidt-Ruppin transformed rat embryo cells revealed that the internal arrangement and cellular integration site of viral DNA sequences was identical with that of the transformed parent cell line. The loss of the transformed phenotype in these revertant cell lines, therefore, does not appear to be the result of rearrangement or deletions either within the viral genome or in adjacent cellular DNA sequences. The data presented support a model for ASV proviral DNA integration in which recombination can occur at multiple sites within the mammalian cell genome. The integration and maintenance of at least one complete copy of the viral genome appear to be required for continuous expression of the transformed phenotype in mammalian cells.  相似文献   

7.
8.
Transformation of rodent cells with isolated restriction endonuclease fragments of herpes simplex virus type 2 DNA identified a region of the genome located between map positions 0.58 and 0.62. These sequences were cloned into pBR322, and the recombinant plasmid was used to transform primary rat embryo cells and NIH 3T3 cells. The transformants were selected for their ability to form dense foci on a monolayer or to form colonies in semisolid medium. In contrast to the parental rat or mouse cells, cell lines transformed with the cloned herpes simplex virus type 2 fragment grow to high saturation densities, replicate in medium containing 1% serum, form colonies in dilute methylcellulose, show reduced levels of fibronectin, and are tumorigenic in nude mice and in their syngeneic hosts. Southern blot hybridizations have detected sequences homologous to the viral fragment in high-molecular-weight DNA from the transformed cell lines that are not present in DNA from normal rodents. In all cases, the plasmid DNA was present in less than one copy per cell, and the patterns of viral sequences changed with passage of the cell line in vivo.  相似文献   

9.
The interaction of polyoma virus with a continuous line of rat cells was studied. Infection of these cells with polyoma did not cause virus multiplication but induced transformation. Transformed cells did not produce infectious virus, but in all clones tested virus was rescuable upon fusion with permissive mouse cells. Transformed rat cells contained, in addition to integrated viral genomes, 20 to 50 copies of nonintegrated viral DNA equivalents per cell (average). "Free" viral DNA molecules were also found in cells transformed by the ts-a and ts-8 polyoma mutants and kept at 33 C. This was not due to a virus carrier state, since the number of nonintegrated viral DNA molecules was found to be unchanged when cells were grown in the presence of antipolyoma serum. Recloning of the transformed cell lines produced subclones, which also contained free viral DNA. Most of these molecules were supercoiled and were found in the muclei of the transformed cells. The nonintegrated viral DNA is infectious. Its specifici infectivity is, however, about 100-fold lower than that of polyoma DNA extracted from productively infected cells, suggesting that these molecules contain a large proportion of defectives.  相似文献   

10.
F Birg  R Dulbecco  M Fried    R Kamen 《Journal of virology》1979,29(2):633-648
Polyoma virus-transformed rat cell lines were isolated as colonies growing in agar after infection of F2408 cells with low multiplicities of wild-type virus. Viral DNA present in the transformed cells was analyzed by fractionating the cellular DNA on agarose gels before and after digestion with various restriction endonucleases, followed by detection of the DNA fragments containing viral sequences using the procedure described by Southern (E. Southern, J. Mol. Biol., 98:503--515, 1975). Five lines, independently derived, were studied in detail. All five lines, when examined after a minimum number of passages in culture, contained both free and apparently integrated viral DNA. The free polyoma DNA in three of the lines was indistinguishable, by restriction enzyme analysis, from wild-type viral DNA, whereas the two other lines also contained smaller free DNA molecules which lacked parts of the wild-type genome. The integrated DNA in the five lines studies existed as head-to-tail tandem repeats of unit-length polyoma DNA covalently attached to nonviral DNA. The same five polyoma-transformed rat lines were examined after further passage in culture. Free viral DNA was then either undetectable or greatly reduced in amounts, whereas the high-molecular-weight, integrated units persisted after passage of the cells. The subclones, derived from one of the five lines selected for detailed analysis, showed some variations in the quantity and size of the free viral DNA as well as minor alterations in the pattern of the apparently integrated sequences.  相似文献   

11.
The integration of polyoma virus DNA into the genome of transformed rat cells generally takes place in a tandem head-to-tail arrangement. A functional viral large tumor antigen (T-Ag) renders this structure unstable, as manifested by free DNA production and excision or amplification of the integrated viral DNA. All of these phenomena involve the mobilization of precise genomic “units,” suggesting that they result from intramolecular homologous recombination events occurring in the repeated viral DNA sequences within the integrated structures. We studied polyoma ts-a-transformed rat cell lines, which produced large T-Ag but contained less than a single copy of integrated viral DNA. In all of these lines, reversion to a normal phenotype (indicative of excision) was extremely low and independent of the presence of a functional large T-Ag. The revertants were either phenotypic or had undergone variable rearrangements of the integrated sequences that seemed to involve flanking host DNA. In two of these cell lines (ts-a 4A and ts-a 3B), we could not detect any evidence of amplification even after 2 months of propagation under conditions permissive for large T-Ag. An amplification event was detected in a small subpopulation of the ts-a R5-1 line after 2 months of growth at 33°C. This involved a DNA fragment of 5.1 kilobases, consisting of the left portion of the viral insertion and about 2.5 kilobases of adjacent host DNA sequences. None of these lines spontaneously produced free viral DNA, but after fusion with 3T3 mouse fibroblasts, R5-1 and 4A produced a low level of heterogeneous free DNA molecules, which contained both viral and flanking host DNA. In contrast, the ts-a 9 cell line, whose viral insertion consists of a partial tandem of ~1.2 viral genomes, underwent a high rate of excision or amplification when propagated at temperatures permissive for large T-Ag function. These results indicate that the high rate of excision and amplification of integrated viral genomes observed in polyoma-transformed rat cells requires the presence of regions of homology (i.e., repeats) in the integrated viral sequences. Therefore, these events occur via homologous intramolecular recombination, which is promoted directly or indirectly by the large viral T-Ag.  相似文献   

12.
The two polyoma DNA fragments generated by cleavage with BamHI and EcoRI were cloned in pBR322, and their oncogenic potential was tested in vivo and in vitro. Only recombinant plasmid DNA containing a polyoma DNA fragment which extends clockwise from 58 to 0 map units and include approximately the 5'-proximal half of the early gene region produced tumors in newborn hamsters and transformed rat embryo cells in tissue culture. Southern blotting analysis indicated that the entire 2.2-kilobase polyoma BamHI-EcoRI fragment was intact in both a tumor cell line and a cell line transformed in culture which we examined. The presence of polyoma middle and small T antigen in these lines was demonstrated by immunoprecipitation and tryptic peptide mapping. DNA from a recombinant plasmid containing a polyoma genome deleted between 90 and 4 map units failed to induce tumors or transform cells.  相似文献   

13.
S K Beckner 《FEBS letters》1984,166(1):170-174
The adenylate cyclase responsiveness of transformed fibroblastic and epithelial cell lines to forskolin, fluoride, guanine nucleotides and cholera toxin was reduced compared to their parental counterparts. This phenomenon was observed in lines transformed by either RNA or DNA tumor viruses, and in the case of polyoma virus, coincided with the expression of middle T antigen. The data suggest that decreased responsiveness of adenylate cyclase to non-hormone activators is a general consequence of viral transformation and may be related to viral regulation of protein kinase activity.  相似文献   

14.
We have recently reported that viral DNA sequences in inbred LSH hamster brain cells transformed by the GS variant of BK virus (LSH-BR-BK) are present predominantly in a free form (Beth et al., J. Virol. 40:276-284, 1981). In this report, we confirm that the presence of viral DNA sequences in these cells is not due to virus production, since viral capsid proteins were not detected by immunoprecipitation. Furthermore, we examined the status of viral DNA in 15 subclones of this cell line and detected free and integrated viral DNA sequences in only 5 of the subclones. The other 10 subclones contained exclusively integrated viral DNA sequences, as shown by the blot hybridization of high-molecular-weight cell DNA which was uncleaved or digested with HincII, for which there are no sites in viral DNA. The arrangement of viral DNA in these clones was further analyzed by cleavage of cellular DNA with HpaII and HindIII. Mitomycin (0.03 microgram/ml) treatment of subclones containing only integrated sequences resulted in the appearance of free viral DNA sequences in some of these cells. This result supports the postulation that free viral DNA in LSH-BR-BK cells is made up of excision products of observed tandemly repeated integrated sequences. In addition to the large T- and small t-antigens, LSH-BR-BK and all of its 15 subclones contained two antigen species which were larger than large T and one species which was smaller than small t. The number of tumor antigens in the LSH- BR-BK cell line and its subclones with a large copy number in a free form was not more than in the subclones with low copy number and integrated DNA. This suggests that free viral DNA is not a template for tumor antigen production in transformed cells.  相似文献   

15.
16.
F2408 rat cells transformed by polyoma virus contained integrated and nonintegrated viral DNA. The presence of nonintegrated viral DNA is under control of the A early viral function. Polyoma ts-a-transformed rat cells lose the free viral DNA when growth at the nonpermissive temperature (40 degrees C), but they reexpress it 1 to 3 days after they are shifted back to the permissive temperature. In contrast, rat cells transformed by a late viral mutant, ts-8, contain free viral DNA at both permissive and nonpermissive temperatures. Treatment of the transformed rat cells with mitomycin C produces a large increase in the quantity of free viral DNA and some production of infectious virus. Experiments of in situ hybridization, with 3H-labeled polyoma complementary RNA as a probe, show that only a minority (approximately 0.1%) of the transformed cells contain nonintegrated viral DNA at any given time. These results suggest that the presence of free viral DNA in polyoma-transformed rat cells is caused by a spontaneous induction of viral DNA replication, occurring with low but constant probability in the transformed cell population, and that the free viral DNA molecules originate from the integrated ones, probably through a phenomenon of excision and limited replication.  相似文献   

17.
L Lania  M Griffiths  B Cooke  Y Ito  M Fried 《Cell》1979,18(3):793-802
The polyoma virus hr-t deletion mutant A185, when compared to wild-type (Py) virus, is at least 105 fold inhibited in its transforming ability. Total cellular DNA from 50 cell lines derived from individual colonies formed after infection of Rat-1 cells with A185 virus was analyzed for the presence of viral sequences by “blot” hybridization (Southern, 1975). Viral sequences were detected in two of these cellular DNAs. One positive cell line (18–37) was studied in detail. The viral sequences present in 18–37 cells as well as the viral sequences present in virus rescued from 18–37 after fusion with permissive mouse cells were identified as A185 and not Py sequences. The A185 viral sequences in 18–37 cells were found to exist both covalently linked to host DNA sequences (integrated) and as free forms. The integrated A185 viral sequences were present in a partial head-to-tail tandem array, as has been observed for Py sequences in transformed rat cells (Birg et al., 1979). Both integrated and free forms of A185 viral sequences were retained in subclones of the parental 18–37 cell line although a simplification of the integrated viral sequence was observed. In the 18–37 cells the 100K large T antigen was synthesized but the 55K middle and 22K small T antigen species were not detected. The 18–37 cells had a normal morphology, were density-sensitive, anchorage-dependent and did not form tumors when injected into syngeneic animals. This normal phenotype of the 18–37 cells was not a result of the inability of the cells to express the transformed phenotype, since the 18–37 cells could be transformed at a high frequency upon infection with Py virus. These results show that integration of viral sequences per se or the presence of the 100K large T antigen is not sufficient for the transformed phenotype to be expressed, and strongly suggest that Py-induced transformation is mediated by the 55K middle and/or 22K small T antigens.  相似文献   

18.
Several transformed cell lines established from Fisher rat cells (FR 3T3) infected with wild-type polyoma virus or simian virus 40 or early temperature-sensitive mutants (polyoma tsa and simian virus 40 tsA30) were studied for their transformation phenotypes. The distinct patterns which were obtained for polyoma and simian virus 40 transformants led to the conclusion that these two viruses express different transforming abilities in rat cells. The results obtained with temperature-sensitive mutant-derived transformants indicate that all of the transformation characteristics studied so far may be under the control of a viral function in polyoma tsa-transformed cells.  相似文献   

19.
Infection of permissive hamster embryo cells with virus preparations enriched for defective interfering (DI) particles of equine herpesvirus type 1 (EHV-1) resulted in persistent infection and oncogenic transformation. Six cell lines, designated DI-5 to -10, exhibited biological properties (immortality, increased saturation density, growth in soft agar, etc.) inherent to transformed cells, but 2 to 18% of the total cells in these cell lines were shown to release virus as judged by electron microscope studies and infectious center assays. The released virus was shown to be standard EHV-1 and not to contain DI particles as determined by density measurements of the viral DNA in the analytical ultracentrifuge and by interference assays using the released virus. Tumorigenicity studies revealed that inoculation of these persistently infected cells into newborn LSH inbred hamsters resulted in a lethal, fulminating hepatitis, whereas inoculation into older immunocompetent hamsters (+4 weeks) led to the development of metastatic fibrous sarcomas. Tumor cell lines (DI-5T to -10T) established from these sarcomas were shown to be transplantable and virus nonproducers. Hybridization analyses of cellular DNAs from DI transformed and tumor cell lines using 32P-labeled genomic EHV-1 DNA as probes indicated that the whole virus genome was detectable in multiple copies (23 to 45) in the transformed cells and that DNA sequences representing only 43.5 to 56.6% of the virus genome were present in amounts of 2 to 4 copies per cell in the DI tumor cells. Expression of these viral DNA sequences as demonstrated by the detection of virus-neutralizing antibodies, 50% neutralizing dose titers ranging from 1:50 to 1:1,000, in the sera of animals inoculated with either the virus-producing transformed cells or the virus-nonproducing tumor cells. Further, EHV-1-specific proteins were detected in the membrane and the perinuclear region of bothDI transformed and tumor cells by indirect immunofluorescent assays using antisera against EHV-1 structural antigens, EHV-1 nonstructural antigens, or preparations of EHV-1 DI particles. The roles of DI particles in mediating persistent infection and cellular transformation are discussed.  相似文献   

20.
In addition to the virus-specified tumor antigens, simian virus 40-transformed cells contain at least one other protein which can be immunoprecipitated with serum from animals bearing simian virus 40-induced tumors. This protein, which is designated Tau antigen, has an apparent molecular weight of 56,000 as determined by electrophoresis on acrylamide gels. The relationship among Tau antigens isolated from different lines of simian virus 40-transformed cells was examined by comparing the methionine-labeled tryptic peptides of these proteins by two-dimensional fingerprinting on thin-layer cellulose plates. In this fashion, we initially determined that the Tau antigens isolated from three different lines of transformed mouse cells were very similar. Second, we found that Tau antigen isolated from a line of rat transformants was closely related, but not identical, to the mouse cell Tau antigens. Approximately 70% of their methionine peptides comigrated in two dimensions. Finally, we showed that Tau antigen isolated from a line of transformed human cells was only partially related to the mouse and rat proteins. About 40% of the methionine peptides of the human protein were also contained in the Tau antigens from the other two species. These results strongly indicate that the Tau antigens isolated from these various simian virus 40-transformed cell lines contain common amino acid sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号