首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bacteriophage P22 is thought to package its double-stranded DNA chromosome from concatemeric replicating DNA in a "processive" sequential fashion. According to this model, during the initial packaging event in such a series the packaging apparatus recognizes a nucleotide sequence, called pac, on the DNA, and then condenses DNA within the coat protein shell unidirectionally from that point. DNA ends are generated near the pac site before or during the condensation reaction. The opposite end of the mature chromosome is created by a cut made in the DNA after a complete chromosome is condensed within the phage head. Subsequent packaging events on that concatemeric DNA begin at the end generated by the headful cut of the previous event and proceed in the same direction as the previous event. We report here the identification of a consensus nucleotide sequence for the pac site, and present evidence that supports the idea that the gene 3 protein is a central participant in this recognition event. In addition, we tentatively locate the portion of the gene 3 protein that contacts the pac site during the initiation of packaging.  相似文献   

2.
Replication and packaging of choleraphage phi 149 DNA.   总被引:1,自引:1,他引:0       下载免费PDF全文
R Chowdhury  A Ray  P Ray    J Das 《Journal of virology》1987,61(12):3999-4006
The intercellular replication of the circularly permuted DNA of choleraphage phi 149 involves a concatemeric DNA structure with a size equivalent to six genome lengths. The synthesis of both monomeric and concatemeric DNAs during replication of phi 149 occurred in the cytoplasm. The concatemers served as the substrate for the synthesis of mature phage DNA, which was eventually packaged by a headful mechanism starting from a unique pac site in the concatemeric DNA. Packaging of DNA into phage heads involved binding of concatemeric DNA to the cell membrane. A scheme involving sequential packaging of five headfuls proceeding in the counterclockwise direction from the pac site is proposed. After infection under high-phosphate conditions, the concatemeric DNA intermediates were not formed, although synthesis of monomeric molecules was unaffected.  相似文献   

3.
Bacteriophage MB78 is a virulent phage ofSalmonella typhimurium. The viral DNA is 42 kb in size and seems to be circularly permuted. We show that viral DNA replication is through concatemeric DNA formation which is subsequently converted into full length DNA through headful packaging. A restriction map of MB78 DNA for six restriction endonucleases e.g.BgIII,PvuII, ECORI, ClaI, SalI and SmaI has been constructed. The yield of certain fragments in less than molar amount is explained in terms of permutation and the headful mechanism of packaging. The packaging site (pac site) has been suggested.  相似文献   

4.
5.
Bacteriophage P22 DNA packaging events occur in processive series on concatemeric phage DNA molecules. At the point where such series initiate, the DNA is recognized at a site called pac, and most molecular left ends are generated within six short regions called end sites, which are present in a 120 base-pair region surrounding the pac site. The bacteriophage P22 genes 2 and 3 proteins are required for successful generation of these ends and DNA packaging during progeny virion assembly. Mutants lacking the 162-amino-acid gene 3 protein replicate DNA and assemble functional procapsids. In this report we describe the nucleotide changes and DNA packaging phenotypes of a number of missense mutations of gene 3, which give the phage a higher than normal frequency of generalized transduction. In cells infected by these mutants, more packaging events initiate on the host chromosome than in wild-type infections, so the mutations are thought to affect the specificity of packaging initiation. In addition to having this phenotype, these mutations affect the process of phage DNA packaging in detectable ways. They may: (1) alter the target site specificity for packaging; (2) make target site recognition more promiscuous; (3) affect end site utilization; (4) alter the pac site; and (5) cause apparent random DNA packaging series initiation on phage DNA.  相似文献   

6.
In genome packaging by tailed bacteriophages and herpesviruses, a concatemeric DNA is cut and inserted into an empty procapsid. A series of cuts follow the encapsidation of each unit-length 'headful' genome, but the mechanisms by which cutting is coupled to packaging are not understood. Here we report the first biochemical characterization of a headful nuclease from bacteriophage T4. Our results show that the T4 nuclease, which resides in the C-terminal domain of large 'terminase' gp17, is a weak endonuclease and regulated by a variety of factors; Mg, NaCl, ATP, small terminase gp16 and N-terminal ATPase domain. The small terminase, which stimulates gp17-ATPase, also stimulates nuclease in the presence of ATP but inhibits in the absence of ATP suggesting interdomain crosstalk. Comparison of the 'relaxed' and 'tensed' states of the motor show that a number of basic residues lining the nuclease groove are positioned to interact with DNA in the tensed state but change their positions in the relaxed state. These results suggest that conformational changes in the ATPase center remodel the nuclease center via an interdomain 'communication track'. This might be a common regulatory mechanism for coupling DNA cutting to DNA packaging among the headful packaging nucleases from dsDNA viruses.  相似文献   

7.
EcoRI analysis of bacteriophage P22 DNA packaging.   总被引:20,自引:0,他引:20  
Bacteriophage P22 linear DNA molecules are a set of circularly permuted sequences with ends located in a limited region of the physical map. This mature form of the viral chromosome is cut in headful lengths from a concatemeric precursor during DNA encapsulation. Packaging of P22 DNA begins at a specific site, which we have termed pac, and then proceeds sequentially to cut lengths of DNA slightly longer than one complete set of P22 genes (Tye et al., 1974b). The sites of DNA maturation events have been located on the physical map of EcoRI cleavage sites in P22 DNA. EcoRI digestion products of mature P22 wild-type DNA were compared with EcoRI fragments of two deletion and two insertion mutant DNAs. These mutations decrease or increase the length of the genome, but do not alter the DNA encapsulation mechanism. Thus the position of mature molecular ends relative to EcoRI restriction sites is different in each mutant, and comparison of the digests shows which fragments come from the ends of linear molecules. From the positions of the ends of molecules processed in sequential headfuls, the location of pac and the direction of encapsulation relative to the P22 map were deduced. The pac site lies in EcoRI fragment A, 4.1 × 103 base-pairs from EcoRI cleavage site 1. Sequential packaging of the concatemer is initiated at pac and proceeds in the counterclockwise direction relative to the circular map of P22. One-third of the linears in a population are cut from the concatemer at pac, and most packaging sequences do not extend beyond four headfuls.Fragment D is produced by EcoRI cleavage at a site near the end of a linear chromosome which has been encapsulated starting at pac. The position of the pac site is therefore defined by one end of fragment D. The pac site is not located near genes 12 and 18, the only known site for initiation of P22 DNA replication, but lies among late genes at a position on the physical gene map approximately analogous to the cohesive end site (cos) of bacteriophage λ at which λ DNA is cleaved during encapsulation. Our results suggest that P22 and λ DNA maturation mechanisms have many common properties.  相似文献   

8.
Tailed icosahedral bacteriophages and other viruses package their double-stranded DNA inside a preformed procapsid. In a large number of phages packaging is initiated by recognition and cleavage by a viral packaging ATPase (terminase) of the specific pac sequence (pac cleavage), which generates the first DNA end to be encapsidated. A sequence-independent cleavage (headful cleavage) terminates packaging, generating a new starting point for another round of packaging. The molecular mechanisms underlying headful packaging and its processivity remain poorly understood. A defined in vitro DNA packaging system for the headful double-stranded DNA bacteriophage SPP1 is reported. The in vitro system consists of DNA packaging reactions with highly purified terminase and SPP1 procapsids, coupled to a DNase protection assay. The high yield obtained enabled us to quantify directly the efficiency of DNA entry into the procapsids. We show that in vitro DNA packaging requires the presence of both terminase subunits. The SPP1 in vitro system is able to efficiently package mature SPP1 DNA as well as linear plasmid DNAs. In contrast, no DNA packaging could be detected with circular DNA, signifying that in vitro packaging requires free DNA extremities. Finally, we demonstrate that SPP1 in vitro DNA packaging is independent of the pac signal. These findings suggest that the formation of free DNA ends that are generated by pac cleavage in vivo is the rate-limiting step in processive headful DNA packaging.  相似文献   

9.
Most tailed bacteriophages and herpes viruses replicate genome as a concatemer which is cut by a 'headful' nuclease upon completion of genome packaging. Here, the catalytic centre of phage T4 headful nuclease, present in the C-terminal domain of 'large terminase' gp17, has been defined by mutational, biochemical and structural analyses. The crystal structure shows that this nuclease has an RNase-H fold, suggesting that it cuts DNA by a two-metal ion mechanism. The active centre has a Mg ion co-ordinated by three acidic residues, D401, E458 and D542. Mutations at any of these residues resulted in loss of nuclease activity, but the mutants can package linear DNA. The gp17's nuclease activity is modulated by the 'small terminase', gp16, by the N-terminal ATPase domain of gp17, and by the assembled packaging motor. These results lead to hypotheses concerning how phage headful nucleases cut the viral genomes before and after, but not during, DNA packaging.  相似文献   

10.
Virion proteins recognize their cognate nucleic acid for encapsidation into virions through recognition of a specific nucleotide sequence contained within that nucleic acid. Viruses like bacteriophage P22, which have partially circularly permuted, double-stranded virion DNAs, encapsidate DNA through processive series of packaging events in which DNA is recognized for packaging only once at the beginning of the series. Thus a single DNA recognition event programmes the encapsidation of multiple virion chromosomes. The protein product of P22 gene 3, a terminase component, is thought to be responsible for this recognition. The site on the P22 genome that is recognized by the gene 3 protein to initiate packaging series is called the pac site. We report here a strategy for assaying pac site activity in vivo, and the utilization of this system to identify and characterize the site genetically. It is an asymmetric site that spans 22 basepairs and is located near the centre of P22 gene 3.  相似文献   

11.
Bacteriophage P1 initiates the processive packaging of its DNA at a unique site called pac. We show that a functional pac site is contained within a 161 base-pair segment of P1 EcoRI fragment 20. It extends from a position 71 base-pairs to a position 232 base-pairs from the EcoRI-22 proximal side of that fragment. The 3' and 5' pac termini are located centrally within that 161 base-pair region and are distributed over about a turn of the DNA helix. The DNA sequence of the terminus region is shown below, with the large arrows indicating the positions of termini that are frequently represented in the PI population and the small arrows indicating the positions of termini that are rarely represented in the P1 population. (Sequence: in text). Digestion of P1 virus DNA with EcoRI generates two major EcoRI-pac fragments, which differ in size by about five or six base-pairs. While the structure and position of the double-stranded pac ends of these fragments have not been determined precisely, the 5' termini at those ends probably correspond to the two major pac cleavage sites in the upper strand of the sequences shown above. The 161 base-pair pac site contains the hexanucleotide sequence 5'-TGATCAG-3' repeated four times at one end and three times at the other. Removal of just one of those elements from either the right or left ends of pac reduces pac cleavage by about tenfold. Moreover, the elements appear to be additive in their effect on pac cleavage, as removal of one and a half elements or all three elements from the right side of pac reduces pac cleavage 100-fold, and greater than 1000-fold, respectively.  相似文献   

12.
DNA packaging of Salmonella phage P22 starts at a defined site on a concatemer of P22 genomes. The molecular ends formed at the packaging initiation site (pac) map within a region of ca. 120 base pairs and may contain any of the four nucleotides at their 5' end. The determination of the positions of the cuts within the sequence demonstrates a characteristic distribution of cut sites which apparently cannot be attributed to the sequence organization of the involved regions. Symmetric elements of the sequence might serve as signals for a recognition event(s) at pac in a separate process preceding the cutting reaction. The region of packaging initiation is located within the sequence coding for gene 3. The 3 protein is responsible for the site specificity of this process. We find no significant homology to Nu1 protein, which appears to have an analogous or similar function in the DNA maturation of Escherichia coli phage lambda.  相似文献   

13.
End structure and mechanism of packaging of bacteriophage T4 DNA.   总被引:2,自引:0,他引:2       下载免费PDF全文
We analyzed by restriction enzyme digestion the end structure of T4 phage DNA by comparing mature, concatemeric, first-packaged, and incompletely packaged DNAs. The structure of mature DNA was also studied using 3' end labeling with terminal transferase. Our data support the hypothesis that T4 DNA packaging is not initiated at specific packaging initiation sequences on the concatemeric precursor (cos or pac site mechanisms) but by a different packaging mechanism.  相似文献   

14.
On the sequential packaging of bacteriophage P22 DNA.   总被引:4,自引:1,他引:3  
Bacteriophage P22 is thought to package daughter chromosomes serially along concatemeric DNA. We present experiments which show that the average DNA packaging series length increases with time after infection, which supports this model. In addition, we have analyzed the effect on average series length of lowering the amount of the various individual proteins involved in DNA packaging. These results support the notion that the protein products of gene 2 and gene 3 are both more stringently required for initiation of sequential DNA packaging series than for their extension, and they are compatible with a model for the control of series length in which that length is determined, at least in part, by a competition between series initiation events and extension events.  相似文献   

15.
Lengths of permuted regions in the P22 and L phage genomes were estimated from the relative yields of DNA in many electrophoretic bands obtained using several restriction endonucleases. It was found that 3.6 kb (8.7%) of P22-DNA and 7.2 kb (17.8%) of L-DNA were circularly permuted. In both phages the sequential packaging process proceeded in the same direction and four headful-size DNA molecules were, on the average, cleaved in one packaging series. The differences in circular permutation may originate from different genome lengths because their average headful portions are very similar (42.5 kb in P22 and 42.3 kb in L).  相似文献   

16.
Packaging of viral genomes into preformed procapsids requires the controlled and synchronized activity of an ATPase and a genome-processing nuclease, both located in the large terminase (L-terminase) subunit. In this paper, we have characterized the structure and regulation of bacteriophage P22 L-terminase (gp2). Limited proteolysis reveals a bipartite organization consisting of an N-terminal ATPase core flexibly connected to a C-terminal nuclease domain. The 2.02 Å crystal structure of P22 headful nuclease obtained by in-drop proteolysis of full-length L-terminase (FL-L-terminase) reveals a central seven-stranded β-sheet core that harbors two magnesium ions. Modeling studies with DNA suggest that the two ions are poised for two-metal ion-dependent catalysis, but the nuclease DNA binding surface is sterically hindered by a loop-helix (L12) motif, which is incompatible with catalysis. Accordingly, the isolated nuclease is completely inactive in vitro, whereas it exhibits endonucleolytic activity in the context of FL-L-terminase. Deleting the autoinhibitory L12 motif (or just the loop L1) restores nuclease activity to a level comparable with FL-L-terminase. Together, these results suggest that the activity of P22 headful nuclease is regulated by intramolecular cross-talk with the N-terminal ATPase domain. This cross-talk allows for precise and controlled cleavage of DNA that is essential for genome packaging.  相似文献   

17.
The terminase of bacteriophage SPP1, constituted by a large (G2P) and a small (G1P) subunit, is essential for the initiation of DNA packaging. A hexa-histidine G2P (H6-G2P), which is functional in vivo, possesses endonuclease, ATPase, and double-stranded DNA binding activities. H6-G2P introduces a cut with preference at the 5'-RCGG downward arrowCW-3' sequence. Distamycin A, which is a minor groove binder that mimics the architectural structure generated by G1P at pac, enhances the specific cut at both bona fide 5'-CTATTGCGG downward arrowC-3' sequences within pacC of SPP1 and SF6 phages. H6-G2P hydrolyzes rATP or dATP to the corresponding rADP or dADP and P(i). H6-G2P interacts with two discrete G1P domains (I and II). Full-length G1P and G1PDeltaN62 (lacking domain I) stimulate 3.5- and 1.9-fold, respectively, the ATPase activity of H6-G2P. The results presented suggest that a DNA structure, artificially promoted by distamycin A or facilitated by the assembly of G1P at pacL and/or pacR, stimulates H6-G2P cleavage at both target sites within pacC. In the presence of two G1P decamers per H6-G2P monomer, the H6-G2P endonuclease is repressed, and the ATPase activity stimulated. Based on these results, we propose a model that can account for the role of terminase in headful packaging.  相似文献   

18.
Hybrid genetic elements, Mud-P and Mud-Q (collectively, Mud-P22s), have been constructed that carry two-thirds of the temperate Salmonella phage P22 genome sandwiched between the ends of transposon Mu. Insertions of these elements in the Salmonella chromosome generate locked-in P22 prophages that cannot excise. Upon induction (as a consequence of the inactivation of P22 c2 repressor), a locked-in prophage replicates its DNA in situ, resulting in the amplification of neighboring regions of the chromosome and the processive packaging of three contiguous headsful of adjacent DNA in one direction from the P22 packaging site, pac. Phage particles in an induced lysate of a Mud-P22 lysogen contain DNA molecules corresponding to several minutes of chromosomal DNA adjacent to the site of prophage insertion and transduce nearby genetic markers with high efficiencies. Mud-P22 prophages have been introduced into an F' episome by transposition; resident Mud insertions on the Salmonella chromosome may be converted to Mud-P22 insertions by homologous recombination in P22-mediated transductional crosses.  相似文献   

19.
The complex double-stranded DNA bacteriophages assemble DNA-free protein shells (procapsids) that subsequently package DNA. In the case of several double-stranded DNA bacteriophages, including P22, packaging is associated with cutting of DNA from the concatemeric molecule that results from replication. The mature intravirion P22 DNA has both non-unique (circularly permuted) ends and a length that is determined by the procapsid. In all known cases, procapsids consist of an outer coat protein, an interior scaffolding protein that assists in the assembly of the coat protein shell, and a ring of 12 identical portal protein subunits through which the DNA is presumed to enter the procapsid. To investigate the role of the portal protein in cutting permuted DNA from concatemers, we have characterized P22 portal protein mutants. The effects of several single amino acid changes in the P22 portal protein on the length of the DNA packaged, the density to which DNA is condensed within the virion, and the outer radius of the capsid have been determined. The results obtained with one mutant (NT5/1a) indicate no change (+/- 0.5%) in the radius of the capsid, but mature DNA that is 4.7% longer and a packing density that is commensurately higher than those of wild-type P22. Thus, the portal protein is part of the gauge that regulates the length and packaging density of DNA in bacteriophage P22. We argue that these findings make models for DNA packaging less likely in which the packing density is a property solely of the coat protein shell or of the DNA itself.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号