首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cycloisomaltooligosaccharide glucanotransferase (CITase; EC 2.4.1.248), a member of the glycoside hydrolase family 66 (GH66), catalyzes the intramolecular transglucosylation of dextran to produce cycloisomaltooligosaccharides (CIs; cyclodextrans) of varying lengths. Eight CI-producing bacteria have been found; however, CITase from Bacillus circulans T-3040 (CITase-T3040) is the only CI-producing enzyme that has been characterized to date. In this study, we report the gene cloning, enzyme characterization, and analysis of essential Asp and Glu residues of a novel CITase from Paenibacillus sp. 598K (CITase-598K). The cit genes from T-3040 and 598K strains were expressed recombinantly, and the properties of Escherichia coli recombinant enzymes were compared. The two CITases exhibited high primary amino acid sequence identity (67%). The major product of CITase-598K was cycloisomaltoheptaose (CI-7), whereas that of CITase-T3040 was cycloisomaltooctaose (CI-8). Some of the properties of CITase-598K are more favorable for practical use compared with CITase-T3040, i.e., the thermal stability for CITase-598K (≤50°C) was 10°C higher than that for CITase-T3040 (≤40°C); the k(cat)/K(M) value of CITase-598K was approximately two times higher (32.2s(-1)mM(-1)) than that of CITase-T3040 (17.8s(-1)mM(-1)). Isomaltotetraose was the smallest substrate for both CITases. When isomaltoheptaose or smaller substrates were used, a lag time was observed before the intramolecular transglucosylation reaction began. As substrate length increased, the lag time shortened. Catalytically important residues of CITase-598K were predicted to be Asp144, Asp269, and Glu341. These findings will serve as a basis for understanding the reaction mechanism and substrate recognition of GH66 enzymes.  相似文献   

2.
The KRICT PX1 gene (GB: FJ380951) consisting of 996 bp encoding a protein of 332 amino acids (38.1 kDa) from the recently isolated Paenibacillus sp. strain HPL-001 (KCTC11365BP) has been cloned and expressed in Escherichia coli. The xylanase KRICT PX1 showed high activity on birchwood xylan, and was active over a pH range of 5.0 to 11.0, with two optima at pH 5.5 and 9.5 at 50 °C with Km value of 5.35 and 3.23, respectively. The xylanase activity was not affected by most salts, such as NaCl, LiCl, KCl, NH4Cl, CaCl2, MgCl2, MnCl2, and CsCl2 at 1 mM, but affected by CuSO4, ZnSO4, and FeCl3. One mM of EDTA, 2-mercaptoethanol, and PMSF did not affect the xylanase activity. TLC analysis of the catalyzed products after reaction with birchwood xylan revealed that xylobiose was the major product with smaller amounts of xylotriose and xylose. A similarity analysis of the amino acids in KRICT PX1 resulted 72% identity with xylanase from Geobacillus stearothermophilus (GB: ZP_03040360), 70% identity with intracellular xylanase from an uncultured bacterium (GB: AAP51133), 68% identity with endo-1-4-xylanse from Paenibacillus sp. (GB: ZP_02847150). In addition, the amino acid alignment of KRICT PX1 with glycosyl hydralase (GH) family 10 xylanases revealed a high degree of homology in highly conserved regions including the catalytic sites, and this was confirmed through PROSITE scan. These results imply that KRICT PX1 is a new xylanase gene, and this alkaline xylanase belongs to GH family 10.  相似文献   

3.
A mutanase (α-1,3-glucanase)-producing microorganism was isolated from a soil sample and was identified as a relative of Paenibacillus sp. The mutanase was purified to homogeneity from culture, and its molecular mass was around 57 kDa. The gene for the mutanase was cloned by PCR using primers based on the N-terminal amino acid sequence of the purified enzyme. The determined nucleotide sequence of the gene consisted of 3651-bp open reading frame that encoded a predicted 1217-amino acid polypeptide including a 43-amino acid signal peptide. The mature enzyme showed similarity to mutanases RM1 of Bacillus sp. strain RM1 and KA-304 of Bacillus circulans with 65.6% and 62.7% identity, respectively. The predicted molecular mass of the mutanase was 123 kDa. Thus, the enzyme purified from the isolate appears to be truncated by proteolysis. The genes for the full-length and truncated mutanases were expressed in Bacillus subtilis cells, and the corresponding recombinant enzymes were purified to homogeneity. The molecular masses of the two enzymes were 116 and 57 kDa, respectively. The specific activity was 10-fold higher for the full-length enzyme than for the truncated enzyme. The optimal pH and temperature for both recombinant enzymes was pH 6.4 in citrate buffer and 45 °C to 50 °C. Amongst several tested polysaccharides, the recombinant full-length enzyme specifically hydrolyzed mutan.  相似文献   

4.
Comparison of HaeIII- and HpaII-restriction profiles of PCR-amplified 16S-23S rDNA ITS regions of Gluconacetobacter sp. LMG 1529T and SKU 1109 with restriction profiles of reference strains of acetic acid bacteria described by Tr?ek and Teuber [34] revealed the same but unique restriction profiles for LMG 1529T and SKU 1109. Further analyses of nearly complete 16S rRNA gene sequences, nearly complete 16S-23S rDNA ITS sequences, as well as concatenated partial sequences of the housekeeping genes dnaK, groEL and rpoB, allocated both strains to a single phylogenetic cluster well separated from the other species of the genus Gluconacetobacter. DNA–DNA hybridizations confirmed their novel species identity by 73% DNA–DNA relatedness between both strains, and values below the species level (<70%) between SKU 1109 and the type strains of the closest phylogenetic neighbors. The classification of strains LMG 1529T and SKU 1109 into a single novel species was confirmed also by AFLP and (GTG)5-PCR DNA fingerprinting data, as well as by phenotypic data. Strains LMG 1529T and SKU 1109 can be differentiated from their closely related Gluconacetobacter species, Gluconacetobacter entanii and Gluconacetobacter hansenii, by their ability to form 2-keto-d-gluconic acid from d-glucose, their ability to use d-mannitol, d-gluconate and glycerol as carbon source and form acid from d-fructose, and their ability to grow without acetic acid. The major fatty acid of LMG 1529T and SKU 1109 is C18:1ω7c (60.2–64.8%). The DNA G + C content of LMG 1529T and SKU 1109 is 62.5 and 63.3 mol% respectively. The name Gluconacetobacter maltaceti sp. nov. is proposed. The type strain is LMG 1529T (= NBRC 14815T = NCIMB 8752T).  相似文献   

5.
The Aeromonas group 501, also named Aeromonas sp. HG13, is taxonomically close to A. schubertii. Results obtained in previous studies, including DNA–DNA hybridization and DNA fingerprinting, suggest that Aeromonas group 501 could constitute a different Aeromonas species. In this work we have performed a polyphasic study with the two strains comprising the Aeromonas sp. HG13 in order to propose a formal species name. They could be differentiated from A. schubertii by the indole and lysine decarboxylase tests and the utilization of l-lactate. Phenotypically, both strains were also easily separated from the other Aeromonas species. Sequence analysis of the 16S rRNA gene showed high sequence similarities (>97%) between Aeromonas group 501 and all Aeromonas species. Nevertheless, sequence divergences of cpn60, dnaJ, gyrB and rpoD genes were higher than the intraspecific threshold values established for each gene (3.5%, 3.3%, 2.3% and 2.6%, respectively), while sequence divergences between strains CDC 2478-85T and CDC 2555-87 were low (0.6–1.1%). The DNA G+C content of the type strain was 62.2 mol%. Phenotypic and genotypic evidence strongly suggests that the Aeromonas group 501 is a novel species of the genus Aeromonas, for which the name Aeromonas diversa sp. nov. is proposed. The type strain is CDC 2478-85T (=CECT 4254T=ATCC 43946T=LMG 17321T).  相似文献   

6.
Five Mycoplasma strains from wild Caprinae were analyzed: four from Alpine ibex (Capra ibex) which died at the Berlin Zoo between 1993 and 1994, one from a Rocky Mountain goat collected in the USA prior to 1987. These five strains represented a population different from the populations belonging to the ‘Mycoplasma mycoides cluster’ as tested using multi locus sequence typing, Matrix-assisted laser desorption/ionization time of flight mass spectrometry analysis and DNA–DNA hybridization. Analysis of the 16S rRNA gene (rrs), genomic sequence based in silico as well as laboratory DNA–DNA hybridization, and the analysis of phenotypic traits in particular their exceptionally rapid growth all confirmed that they do not belong to any Mycoplasma species described to date. We therefore suggest these strains represent a novel species, for which we propose the name Mycoplasma feriruminatoris sp. nov. The type strain is G5847T (= DSM 26019T = NCTC 1362T).  相似文献   

7.
Four isolates of Gram-negative facultatively anaerobic bacteria, three of them producing NDM-1 carbapenemase, were isolated from hospitalized patients and outpatients attending two military hospitals in Rawalpindi, Pakistan, and studied for their taxonomic position. Initially the strains were phenotypically identified as Citrobacter species. Comparative analysis of 16S rRNA gene sequences then showed that the four strains shared >97%, but in no case >98.3%, 16S rRNA gene sequence similarities to members of the genera Citrobacter, Kluyvera, Pantoea, Enterobacter and Raoultella, but always formed a separate cluster in respective phylogenetic trees. Based on multilocus sequence analysis (MLSA) including partial recN, rpoA, thdF and rpoB gene sequence and respective amino acid sequence analysis it turned out that the strains also here always formed separate clusters. Based on further comparative analyses including DNA–DNA hybridizations, genomic fingerprint analysis using rep- and RAPD-PCRs and physiological tests, it is proposed to classify these four strains into the novel genus Pseudocitrobacter gen. nov. with a new species Pseudocitrobacter faecalis sp. nov. with strain 25 CITT (= CCM 8479T = LMG 27751T) and Pseudocitrobacter anthropi sp. nov. with strain C138T (= CCM 8478T = LMG 27750T), as the type strains, respectively.  相似文献   

8.
The current study forms part of an ongoing research effort focusing on the elucidation of the chemical structure of the sulfated extracellular polysaccharide of the red microalga Porphyridium sp. (UTEX 637). We report here on the chemical structure of a fraction separated from an acidic crude extract of the polysaccharide, as investigated by methylation analysis, carboxyl reduction-methylation analysis, desulfation-methylation analysis, partial acid hydrolysis, Smith degradation, together with 1D and 2D 1H and 13C NMR spectroscopy. This fraction with a molar mass of 2.39 × 105 g mol−1 comprised d- and l-Gal, d-Glc, d-Xyl, d-GlcA, and sulfate groups in a molar ratio of 1.0:1.1:2.1:0.2:0.7. The almost linear backbone of the fraction is composed of (1→2)- or (1→4)-linked d-xylopyranosyl, (1→3)-linked l-galactopyranosyl, (1→3)-linked d-glucopyranosyl, and (1→3)-linked d-glucopyranosyluronic acid and comprises a possible acidic building unit:

[(2 or 4)-β-d-Xylp-(l→3)]m-α-d-Glcp-(1→3)-α-d-GlcpA-(1→3)-l-Galp(l→

Attached to the backbone are sulfate groups and nonreducing terminal d-xylopyranosyl and galactopyranosyl residues, which occur at the O-6 positions of Glc-derived moieties in the main chain.  相似文献   

9.
假单胞菌M18是一株能同时合成吩嗪-1-羧酸(PCA)和藤黄绿菌素两种抗生素的植物根际分离细菌。RelA催化合成的效应分子ppGpp能介导细菌因营养饥饿引起的应激反应。以M18菌株染色体DNA为模板,PCR扩增获得relA基因,通过庆大霉素抗性片段插入失活与同源重组技术,构建假单胞菌M18的relA突变菌株M18RAG。在PPM培养基中进行PCA发酵分析,发现突变菌株M18RAG的PCA产量显著升高,约为野生型菌株的1.5-2倍。relA基因反式互补实验以及phzA′-′lacZ翻译融合测定结果,均进一步证明了RelA对PCA生物合成及其基因表达具有抑制作用。  相似文献   

10.
Eleven Burkholderia cepacia-like isolates of human clinical and environmental origin were examined by a polyphasic approach including recA and 16S rRNA sequence analysis, multilocus sequence analysis (MLSA), DNA base content determination, fatty acid methyl ester analysis, and biochemical characterization. The results of this study demonstrate that these isolates represent a novel species within the B. cepacia complex (Bcc) for which we propose the name Burkholderia pseudomultivorans. The type strain is strain LMG 26883T (=CCUG 62895T). B. pseudomultivorans can be differentiated from other Bcc species by recA gene sequence analysis, MLSA, and several biochemical tests including growth at 42 °C, acidification of sucrose and adonitol, lysine decarboxylase and β-galactosidase activity, and esculin hydrolysis.  相似文献   

11.
In this study, we have structurally characterized the amidase of a nitrile-degrading bacterium, Rhodococcus sp. N-771 (RhAmidase). RhAmidase belongs to amidase signature (AS) family, a group of amidase families, and is responsible for the degradation of amides produced from nitriles by nitrile hydratase. Recombinant RhAmidase exists as a dimer of about 107 kDa. RhAmidase can hydrolyze acetamide, propionamide, acrylamide and benzamide with kcat/Km values of 1.14 ± 0.23 mM− 1s− 1, 4.54 ± 0.09 mM− 1s− 1, 0.087 ± 0.02 mM− 1s− 1 and 153.5 ± 7.1 mM− 1s− 1, respectively. The crystal structures of RhAmidase and its inactive mutant complex with benzamide (S195A/benzamide) were determined at resolutions of 2.17 Å and 2.32 Å, respectively. RhAmidase has three domains: an N-terminal α-helical domain, a small domain and a large domain. The N-terminal α-helical domain is not found in other AS family enzymes. This domain is involved in the formation of the dimer structure and, together with the small domain, forms a narrow substrate-binding tunnel. The large domain showed high structural similarities to those of other AS family enzymes. The Ser-cis Ser-Lys catalytic triad is located in the large domain. But the substrate-binding pocket of RhAmidase is relatively narrow, due to the presence of the helix α13 in the small domain. The hydrophobic residues from the small domain are involved in recognizing the substrate. The small domain likely participates in substrate recognition and is related to the difference of substrate specificities among the AS family amidases.  相似文献   

12.
A combination of TLC, ESI-MS/MS and GC-MS was used to identify unusual molecular species of N-acylphosphatidylethanolamines containing very-long-chain anteiso branched fatty acids (VLCFAs) from Calothrix sp. collected in Antarctica and determine their component VLCFA up to 33-methyltetratriacontanoic acid as picolinyl ester derivatives using GC-MS.  相似文献   

13.
Prefoldin is a heterohexameric molecular chaperone complex that is found in the eukaryotic cytosol and also in archaea. It captures a nonnative protein and subsequently delivers it to a group II chaperonin for proper folding. Archaeal prefoldin is a heterocomplex containing two α subunits and four β subunits with the structure of a double β-barrel assembly, with six long coiled coils protruding from it like a jellyfish with six tentacles. We have studied the protein folding mechanism of group II chaperonin using those of Thermococcus sp. strain KS-1 (T. KS-1) because they exhibit high protein folding activity in vitro. We have also demonstrated functional cooperation between T. KS-1 chaperonins and prefoldin from Pyrococcus horikoshii OT3. Recent genome analysis has shown that Thermococcus kodakaraensis KOD1 contains two pairs of prefoldin subunit genes, correlating with the existence of two different chaperonin subunits. In this study, we characterized four different recombinant prefoldin complexes composed of two pairs of prefoldin subunits (α1, α2, β1, and β2) from T. KS-1. All of them (α1-β1, α2-β1, α1-β2, and α2-β2) exist as α2β4 heterohexamers and can protect several proteins from forming aggregates with different activities. We have also compared the collaborative activity between the prefoldin complexes and the cognate chaperonins. Prefoldin complexes containing the β1 subunit interacted with the chaperonins more strongly than those with the β2 subunit. The results suggest that Thermococcus spp. express different prefoldins for different substrates or conditions as chaperonins.  相似文献   

14.
5′-Methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH) are important metabolites in all living organisms. Two similar nucleosidases for hydrolyzing MTA in Arabidopsis thaliana (AtMTAN1 and AtMTAN2) exist, but only AtMTAN2 shows markedly broad substrate specificity for hydrolysis of SAH. To examine the biochemical characteristics of AtMTAN2, it was over-expressed in Escherichia coli and purified to homogeneity. Spectroscopic assays confirm AtMTAN2 catalyzes MTA as well as SAH hydrolysis, compared to AtMTAN1 which only hydrolyzes MTA. In addition, crystal structure of the AtMTAN2 enzyme in complex with, adenine was determined at 2.9 Å resolution. Finally, a structural comparison of AtMTAN2 performed with previously determined structures of AtMTAN1 and an E. coli homolog provides clues for the substrate specificity of MTA nucleosidases in A. thaliana.  相似文献   

15.
A strain was selected by its highest extracellular polysaccharide (EPS) production ability compare to other isolates from the same rhizospheric soil. The selected strain was identified by 16S rDNA sequencing and designated as SSB81. Phylogenetic analysis of the gene sequence showed its close relatedness with Azotobacter vinelandii and Azotobacter salinestris. Maximum EPS (2.52 g l−1) was recovered when the basal medium was supplemented with glucose (2.0%), riboflavin (1 mg l−1) and casamino acid (0.2%). The EPS showed a stable viscosity level at acidic pH (3.0–6.5) and the pyrolysis temperature was found to be at 116.73 °C with an enthalpy (ΔH) of 1330.72 Jg−1. MALDI TOF mass spectrometric result suggests that polymer contained Hex5Pent3 as oligomeric building subunit. SEM studies revealed that the polymer had a porous structure with small pore size distribution indicating the compactness of the polymer. This novel EPS may find possible application as a polymer for environmental bioremediation and biotechnological processes.  相似文献   

16.
In this paper we analyze through a polyphasic approach several Bradyrhizobium strains isolated in Spain and Morocco from root nodules of Retama sphaerocarpa and Retama monosperma. All the strains have identical 16S rRNA genes and their closest relative species is Bradyrhizobium lablabi CCBAU 23086T, with 99.41% identity with respect to the strain Ro19T. Despite the closeness of the 16S rRNA genes, the housekeeping genes recA, atpD and glnII were divergent in Ro19T and B. lablabi CCBAU 23086T, with identity values of 95.71%, 93.75% and 93.11%, respectively. These differences were congruent with DNA–DNA hybridization analysis that revealed an average of 35% relatedness between the novel species and B. lablabi CCBAU 23086T. Also, differential phenotypic characteristics of the new species were found with respect to the already described species of Bradyrhizobium. Based on the genotypic and phenotypic data obtained in this study, we propose to classify the group of strains isolated from R. sphaerocarpa and R. monosperma as a novel species named Bradyrhizobium retamae sp. nov. (type strain Ro19T = LMG 27393T = CECT 8261T). The analysis of symbiotic genes revealed that some of these strains constitute a new symbiovar within genus Bradyrhizobium for which we propose the name “retamae”, that mainly contains nodulating strains isolated from Retama species in different continents.  相似文献   

17.
A novel bacterium, Ochrobactrum sp. T, capable of simultaneous debromination and aerobic mineralization of tetrabromobisphenol-A (TBBPA), was isolated from a sludge sample collected from an electronic-waste recycling site. The bacterium exhibited maximal debrominase activity at pH 6.5, 35 °C, and 200 rpm in Luria-Bertani culture medium. Initial TBBPA concentration and pH had more significant effects on degradation efficiency than those of temperature and inoculum size. Degradation and debromination efficiencies of 91.8% and 86.7%, respectively, were achieved within 72 h under optimized conditions of 35 °C, pH 7.0, inoculum volume of 25 mL, and TBBPA concentration of 3 mg L−1. In addition, a 35.6% decrease in total organic carbon was observed after the degradation of 5 mg L−1 TBBPA for 120 h. Eight metabolic intermediates were identified during the biodegradation of TBBPA. This study is the first report to propose a one-step process for TBBPA debromination and mineralization by a single bacterial strain.  相似文献   

18.
19.
A halophilic, aerobic Gram-negative bacterium, designated strain CVS-6T, was isolated from a sea salt evaporation pond on the Island of Sal in the Cape Verde Archipelago. Phylogenetic analysis of the 16S rRNA gene sequence revealed a clear affiliation of the organism with members of the family Idiomarinaceae. Sequence similarities between CVS-6T and the type strains of the species of the genera Pseudidiomarina and Idiomarina ranged from 93.7% to 96.9%. The major isoprenoid quinone was ubiquinone 8 (Q-8). The major cellular fatty acids were 15:0 iso (21.8%), 17:0 iso (12.5%), 17:1 iso ω9c (10.7%), and 16:1 ω7c (10.6%). The DNA G+C content was 51.6 mol%. The species represented by strain CVS-6T could be distinguished from the species of the genera Pseudidiomarina and Idiomarina; however, it was not possible to distinguish both genera from each other using the phenotypic or chemotaxonomic characteristics examined. Consequently, we propose that the species classified in the genus Pseudidiomarina should be transferred to the genus Idiomarina. We also propose that, on the basis of physiological and biochemical characteristics, strain CVS-6T (=LMG 23123=CIP 108836) represents a new species which we name Idiomarina insulisalsae.  相似文献   

20.
An actinobacterial strain YIM 80766T was isolated from a soil sample collected from the eastern desert of Egypt, and its taxonomic position was investigated by a polyphasic approach. The organism was found to have a range of chemical and morphological properties consistent with its classification in the genus Dietzia. Phylogenetic analysis indicated that the levels of 16S rRNA gene sequence similarity between strain YIM 80766T and the other type strains of recognized members of the genus Dietzia were 97.0–98.9%. However, DNA–DNA hybridization values and phenotypic characteristics revealed that the strain differed from the currently recognized species of the genus Dietzia. Therefore, strain YIM 80766T represents a novel species of the genus Dietzia, for which the name Dietzia lutea sp. nov. is proposed. The type strain is YIM 80766T (=KCTC 19232T=DSM 45074T=CCTCC AA 207008T). The 16S rRNA gene sequence of strain YIM 80766T has been deposited in GenBank under the accession number EU821598.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号