首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the model of acute infectious peritonitis in rats it is shown that the mast cell depletion affected the inflammatory focus vascular permeability mainly in the immediate phase of its increase. Leukopenia inhibited the permeability both in the immediate and delayed phases. The combined depletion of mast cells and leukocytes not only inhibited the degree of vascular permeability increase but strongly affected its kinetics during exudative phase of peritonitis. The results indicate that in the natural conditions of inflammation the mast cell-leukocyte interaction in the vascular permeability increase takes place.  相似文献   

2.
The model of acute infectious peritonitis in rats with vinblastine-induced leukopenia has been used to show that the leukocyte depletion significantly influences the vascular permeability of abdominal cavity during the whole period of exudation. It inhibits the vascular permeability rise both in the immediate phase and in the initial period of delayed phase (5 h). 12 hours-5 days after the inflammatory agent action the vascular permeability under conditions of primary leukopenia appears to be more than in the natural course of inflammation, that coincides with excess of the leukocyte number usual for the inflammatory focus and with its significant increase in blood. The results indicate the essential role of leukocytes both during the immediate and delayed phases of increase in the vascular permeability of inflammatory infectious focus.  相似文献   

3.
Degranulation of mast cells of albino rat peritoneal fluid and mesentery of the small intestine and the release of histamine and serotonin in acute aseptic peritonitis began the first minute after the damage and reached their maximum by the 5-th minute; by the 15-th minute the level of free amines did not differ significantly from the initial one. The dynamics of the immediate phase of increased vascular permeability corresponded to the dynamics of the free amines. The greatest increase of vascular permeability was noted on the 10th--15-th minute; it decreased considerably by the 20th minute. It was concluded that histamine and serotonin caused an increase of vascular permeability in acute aseptic peritonitis mainly within 15 minutes after the damage.  相似文献   

4.
Neurogenic inflammation, vascular permeability, and mast cells   总被引:6,自引:0,他引:6  
Electrical stimulation (ES) of sensory nerves causes increased vascular permeability and vasodilatation, a process known as neurogenic inflammation. The purpose of this study was to assess the role of mast cells in neurogenic inflammation induced by ES of sensory nerves. ES of the rat saphenous nerve for 1, 3, 5, 15, or 30 min induced a 166 to 436% increase in the amount of 125I-albumin deposited in the skin. Through the initial 15 min of ES, the histamine content of the skin remained unchanged. However, 30 min of ES caused a 22.1% decrease in skin histamine (p less than 0.05). ES for 5 min followed by measurement of vascular permeability from 0 to 30 min thereafter resulted in maximal increases in 125I-albumin in the skin immediately after cessation of the pulse of ES. When skin histamine was measured at various intervals after a 5-min pulse of ES, no change in the histamine content was observed through the subsequent 30 min. When mast cell degranulation was assessed histologically, 5 min of ES failed to stimulate mast cell degranulation. However, 30 min of ES caused a significant increase in the proportion of degranulating mast cells. When draining venous plasma histamine was monitored before, during and after ES, no change in plasma histamine was observed. In contrast, the intradermal injection of 5 micrograms of compound 48/80 produced a significant increase in plasma histamine. In order to examine the possibility that histamine might be released but remain in the skin after ES, skin "blisters" were developed by intradermal injections of saline. There was a significant increase in the amount of 125I-albumin extravasated into blister fluid measured after 3, 5, and 10 min of ES and a significant increase in histamine after 5 or 10 min. Therefore, prolonged ES of sensory nerves can cause mast cell degranulation. However, ES causes increased vascular permeability at times when no mast cell activation can be observed. These data suggest that the initial phases of neurogenic inflammation are independent of mast cell activation.  相似文献   

5.
Intravascular application of goat anti-rabbit immunoglobulin E (IgE) was used to stimulate parenchymal mast cells in situ in perfused rabbit lungs. Sustained pulmonary arterial pressure rise was evoked in the absence of lung vascular permeability increase and lung edema formation. Early prostaglandin (PG) D2 and histamine release into the perfusate was documented, accompanied by more sustained liberation of cysteinyl leukotrienes (LT), LTB4, and PGI2. The quantities of these inflammatory mediators displayed the following order: histamine greater than cysteinyl-LT greater than PGI2 greater than LTB4 greater than PGD2. Pressor response and inflammatory mediator release revealed corresponding bell-shaped dose dependencies. Cyclooxygenase inhibition (acetylsalicylic acid) suppressed prostanoid generation, increased LT release, and did not substantially affect pressor response and histamine liberation. BW755 C, a cyclo- and lipoxygenase inhibitor, blocked the release of cysteinyl-LT and markedly reduced the liberation of the other inflammatory mediators as well as the pressor response. The H1-antagonist clemastine caused a moderate reduction of the anti-IgE-provoked pressure rise. We conclude that intravascular anti-IgE challenge in intact lungs provokes the release of an inflammatory mediator profile compatible with in situ lung parenchymal mast cell activation. Pulmonary hypertension represents the predominant vascular response, presumably mediated by cysteinyl-LT and, to a minor extent, histamine liberation.  相似文献   

6.
To assess the possible involvement of mast cells and/or their mediators in inflammatory bowel diseases, the effect of the histamine H1 antagonist Dithiaden was studied on a model of acetic acid-induced colitis in rats. Dithiaden pretreatment by intracolonic administration was found to reduce the extent of acute inflammatory colonic injury. This was manifested by a decrease in the score of gross mucosal injury, by lowered colonic wet weight and by diminished myeloperoxidase activity reflecting reduced leukocyte infiltration. Vascular permeability and gamma-glutamyl transpeptidase activity, elevated by acetic acid exposure, were decreased after Dithiaden pretreatment. The results indicate that locally administered Dithiaden may protect the colonic mucosa against an acute inflammatory attack by interfering with the action of the major mast cell mediator histamine.  相似文献   

7.
Mast cells have been implicated as the central effectors in allergic responses, yet a fatal anaphylactic response can be induced in mast cell-deficient mice. In this study, we examined the immediate hypersensitivity response in wild-type (WT) and mast cell-deficient mice (W/W(v)) in two different tissues (skin and skeletal muscle). Vascular permeability and leukocyte recruitment were studied after immediate challenge or 4 h postchallenge in OVA-sensitized mice. In skin, immediate challenge induced a significant increase in vascular permeability (75%) within 30 min and was accompanied by increased leukocyte adhesion 4 h postchallenge. In the absence of mast cells, no changes in vascular permeability or leukocyte recruitment were observed in skin. In WT skeletal muscle, immediate challenge induced a rapid increase (80%) in vascular permeability within 5 min and significant leukocyte recruitment after 4 h. Surprisingly, in W/W(v), a gradual increase in vascular permeability was observed, reaching a maximum (50%) within 30 min. Despite the absence of mast cells, subsequent leukocyte emigration was similar to that observed in WT mice. Pretreatment with anti-platelet serum in W/W(v) returned Ag-induced vascular permeability and leukocyte recruitment to baseline. Platelets were shown to interact with endothelium in skeletal muscle, but not dermal microvasculature. These data illustrate that mast cells play a prominent role in vascular permeability and leukocyte recruitment in skin in response to Ag, however, in skeletal muscle; these changes can occur in the absence of mast cells, and are mediated, in part, by the presence of platelets.  相似文献   

8.
Local application of inflammatory mediators to the hamster cheek pouch produces an immediate increase in the number of leaking postcapillary venules as observed by intravital light microscopy. Leaks are illuminated by using fluorescein-labeled dextran given i.v. before mediator challenge. All mediators that have been tested produce a similar pattern of vascular leakage exclusively from postcapillary venules. Mediators can be characterized by their effects on vascular permeability and whether they produce dilation (bradykinin, prostaglandins [PGs]) or constriction (leukotrienes [LTs]) of arterioles. The rank order potency for vascular leakage is LTs greater than bradykinin greater than histamine greater than PGs. A linear regression for the relation between dose of mediator and number of leaky venules has been shown for several mediators, e.g., bradykinin, histamine, and LTs. Inhibition of mediator-induced vascular leakage is produced by a wide variety of substances subsequent to a direct effect on the venular endothelial cell. Morphological, physiological, and pharmacological findings are consistent, and provide evidence for the regulation of macromolecular permeability by the endothelial cells in the postcapillary venules.  相似文献   

9.
Inflammatory reactions induced by TPA (12-O-tetradecanoylphorbol 13-acetate)-type tumor promoters, including TPA, teleocidin and aplysiatoxin, and chemical mediators responsible for such inflammatory reactions were analyzed. The tumor promoter dissolved in a 0.8% sodium carboxymethyl cellulose solution was injected into a subcutaneous air pouch preformed on the dorsum of rats. Within 30 min after the injection, vascular permeability as measured by the leakage of labeled albumin into the pouch fluid was increased, with a concomitant increase in histamine level. This increase in vascular permeability was inhibited by a histamine antagonist, pyrilamine, and a serotonin antagonist, methysergide. Vascular permeability at 4 h was not inhibited by pyrilamine or methysergide but was inhibited by a cyclooxygenase inhibitor, indomethacin, with a parallel decrease in the prostaglandin E2 level in the pouch fluid. These results suggest that the TPA-type tumor promoters induce inflammation by the mechanism of mast cell degranulation within a short period, this being followed by the stimulation of arachidonic acid metabolism. The mechanism of the in vivo effect of the TPA-type tumor promoters is discussed and compared with in vitro effects that we have previously reported.  相似文献   

10.
Cytotoxicity of Vibrio vulnificus cytolysin on rat peritoneal mast cells   总被引:3,自引:0,他引:3  
Histamine has been thought to be a permeability enhancing factor in Vibrio vulnificus infection. The injection of living bacteria or purified V. vulnificus cytolysin (VVC) can cause lethality in mice by inducing hemoconcentration and increased vascular permeability. In the present study, we tried to identify whether histamine release causes the increased vascular permeability that is responsible for the lethal effect of VVC. Treatment of rat peritoneal mast cells with high concentrations of VVC caused the release of whole cellular histamine and lactate dehydrogenase (LDH). At concentrations less than 10 HU/ml, histamine and LDH were not released whereas preloaded 2-deoxy-D-glucose was rapidly effluxed with the concomitant decrease in cellular ATP. VVC-treated mast cells were refractory to the stimulation of histamine secretion by Compound 48/80 but remained fully responsive to Ca2+ plus GTP-gamma-S. These results indicate that histamine can be released from mast cells only when the concentration of VVC is high enough to cause the lysis of cells. At low concentrations, VVC does not induce the release of stored histamine from damaged cells. The intravenous injection of 80 HU purified VVC to rats, which can produce the calculated blood concentration of about 3 HU/ml, caused a marked increase in pulmonary vascular permeability, hemoconcentration and death. However, no increase in blood histamine level was detected. This level of VVC in rat blood was enough to cause severe hemoconcentration and lethality but might not be enough to cause cytolysis of the mast cells and resulting histamine release.  相似文献   

11.
Activation of cutaneous sensory nerves induces vasodilatation and vascular permeability, i.e., neurogenic inflammation. We examined the histology and possible mast cell involvement in cutaneous neurogenic inflammation induced by electrical nerve stimulation (ENS). Three lines of evidence indicated that mast cells were not involved in rodent cutaneous neurogenic inflammation induced by electrical stimulation of the saphenous nerve. 1) Most mast cells (86.5% of all mast cells in the dorsal skin of the paw) were found in the deep dermis, whereas vessels developing increased vascular permeability after nerve stimulation (visualized with the supravital dye Monastral blue B, a macro-molecular tracer) were localized predominantly in the superficial dermis. By contrast, i.v. substance P, which also causes increased cutaneous vascular permeability, predominantly caused deeper vessels to leak. As analyzed by electron microscopy, the vessels that developed permeability in response to nerve stimulation, and were thereby stained with Monastral blue B, were found to be exclusively postcapillary venules. 2) Disodium cromoglycate (DSCG), a mast cell stabilizing compound, inhibited the cutaneous vascular permeability induced by intradermal injections of anti-IgE in a dose-dependent manner. By contrast, vascular permeability induced by ENS was not influenced by disodium cromoglycate treatment. 3) ENS and i.v. substance P both induced cutaneous vascular permeability in mast cell-deficient W/Wv mice, despite the fact that their skin contained only 4.7% of the mast cells present in their normal +/+ litter mates. The magnitude of ENS-induced vascular permeability responses in W/Wv mice were similar to control +/+ and BALB/c mice. This study supports our earlier observations suggesting that mast cell activation is not essential for the initial, vascular permeability phase of neurogenic inflammation in rodent skin.  相似文献   

12.
Disturbances of vascular permeability were studied by the "vascular labeling" technique in the mesentry during the 24-hour immobilization of rats. Administration of dimebolin (an antihistaminic preparation) decreased the number of labeled vessels and labeling intensity. This effect was expressed in the presence of mast cells only and was accompanied by the mast cell degranulation. The authors suppose that the mast cells contain a substance preventing the disturbance of vascular permeability and released during degranulation. Such substance might be heparin. Experiments showed that small doses of heparin failed to produce such effect. These results allowed one to conclude that mast cells played a double role in the mechanisms of disturbance of vascular permeability during immobilization--the damaging (by the action of histamine and serotonine) and the protective (by the released heparin) action.  相似文献   

13.
Reactions of microvessels and mast cells to laser irradiation were studied in rat mesentery by applying the method of intravital microscopy. An ultra-violet laser (gamma=337 nm) was used. The diameter of the laser beam was changed from 2 to 100 mum. Different irradiation doses provoked either an increase of vascular permeability or thrombus formation or hemorrhage. Apart from the vascular wall injury, factors accompanying the damage of red blood cells and other cells of the blood may play a role in the process of thrombus formation. Changes of the vascular diameter and permeability after laser irradiation of mast cells are probably connected with the release of histamine and serotonin contained in them.  相似文献   

14.

Background

While a number of the consequences of mast cell degranulation within tissues have been documented including tissue-specific changes such as bronchospasm and the subsequent cellular infiltrate, there is little known about the immediate effects of mast cell degranulation on the associated vasculature, critical to understanding the evolution of mast cell dependent inflammation.

Objective

To characterize the microcirculatory events that follow mast cell degranulation.

Methodology/Principal Findings

Perturbations in dermal blood flow, temperature and skin color were analyzed using laser-speckle contrast imaging, infrared and polarized-light colorimetry following cold-hand immersion (CHI) challenge in patients with cold-induced urticaria compared to the response in healthy controls. Evidence for mast cell degranulation was established by documentation of serum histamine levels and the localized release of tryptase in post-challenge urticarial biopsies. Laser-speckle contrast imaging quantified the attenuated response to cold challenge in patients on cetirizine. We found that the histamine-associated vascular response accompanying mast cell degranulation is rapid and extensive. At the tissue level, it is characterized by a uniform pattern of increased blood flow, thermal warming, vasodilation, and recruitment of collateral circulation. These vascular responses are modified by the administration of an antihistamine.

Conclusions/Significance

Monitoring the hemodynamic responses within tissues that are associated with mast cell degranulation provides additional insight into the evolution of the acute inflammatory response and offers a unique approach to assess the effectiveness of treatment intervention.  相似文献   

15.
Atrial peptides induce mast cell histamine release.   总被引:1,自引:0,他引:1  
Human atrial natriuretic peptide [ANF(1-28)] contains five arginine residues and carries an overall positive change of four. It was hypothesized that atrial peptides may induce mast cell histamine release. In vitro, three atrial peptides [ANF(1-28), (3-28) and (5-28)] were demonstrated to induce dose-dependent histamine release from isolated rat peritoneal mast cells. In vivo, ANF(3-28) produced a dose-dependent increase in rat skin permeability which was blocked by antagonists of histamine and serotonin. The results indicate atrial peptides are capable of inducing mast cell degranulation in a manner similar to that described for other positively charged peptides.  相似文献   

16.
Systemic hypoxia produces an inflammatory response characterized by increases in reactive O(2) species (ROS), venular leukocyte-endothelial adherence and emigration, and vascular permeability. Inflammation is typically initiated by mediators released from activated perivascular cells that generate the chemotactic gradient responsible for extravascular leukocyte accumulation. These experiments were directed to study the possible participation of mast cells in hypoxia-induced microvascular inflammation. Mast cell degranulation, ROS levels, leukocyte adherence and emigration, and vascular permeability were studied in the mesenteric microcirculation by using intravital microscopy of anesthetized rats. The main findings were 1) activation of mast cells with compound 48/80 in normoxia produced microvascular effects similar, but not identical, to those of hypoxia; 2) systemic hypoxia resulted in rapid mast cell degranulation; 3) blockade of mast cell degranulation with cromolyn prevented or attenuated the hypoxia-induced increases in ROS, leukocyte adherence/emigration, and vascular permeability; and 4) mast cell degranulation during hypoxia was prevented by administration of the antioxidant lipoic acid and of nitric oxide. These results show that mast cells play a key role in hypoxia-induced inflammation and suggest that alterations in the ROS-nitric oxide balance may be involved in mast cell activation during hypoxia.  相似文献   

17.
E Alm  G D Bloom 《Life sciences》1982,30(3):213-218
Secretory events in cells in general are accompanied by increased levels of cyclic AMP. In mast cells, however, the pattern is reversed. Thus histamine release is associated with a fall in cAMP. It has been suggested that the lowered levels of cAMP lead to an increase in membrane permeability towards calcium and that an influx of such ions triggers the release mechanisms. It has further been reported that high levels of cAMP inhibit histamine release by decreasing the permeability. However, evidence has now accumulated indicating that this general concept is far too simplistic. Studies are reviewed which imply that there is little or no correlation between histamine release and intracellular levels of cyclic nucleotides. A new working hypothesis with respect to the role of these nucleotides in mast cell secretion is proposed.  相似文献   

18.
Histamine is an important mediator of immediate hypersensitivity for both animals and humans. The action of histamine on target tissues is believed to be mediated by specific cell surface receptors, especially H1 and H2 receptors for hypersensitivity and inflammatory reactions, which involve stimulation of smooth muscle contractility, alterations in vascular permeability, and modifications in the activities of macrophages and lymphocytes. Although the nature of histamine receptors in the brain and peripheral tissues has been studied extensively by many laboratories, the molecular mechanism of histamine receptor-mediated reactions is not fully understood, mainly because histamine receptors are incompletely characterized from the biochemical point of view. In previous studies, we have found that the cultured smooth muscle cell line DDT1MF-2, derived from hamster vas deferens, expresses low-affinity histamine H1 receptors and responds biochemically and functionally to H1-specific stimulation (Mitsuhashi and Payan, J Cell Physiol 134:367, 1988). This cell line provides a model for analyzing the biochemical responses of H1 receptor-mediated reactions in peripheral tissues. In this review, we summarized our recent progress in the study of low-affinity H1 receptors on DDT1MF-2 cells.  相似文献   

19.
Beta-catenin plays an important role in the regulation of vascular endothelial cell-cell adhesions and barrier function by linking the VE-cadherin junction complex to the cytoskeleton. The purpose of this study was to evaluate the effect of beta-catenin and VE-cadherin interactions on endothelial permeability during inflammatory stimulation by histamine. We first assessed the ability of a beta-catenin binding polypeptide known as inhibitor of beta-catenin and T cell factor (ICAT) to compete beta-catenin binding to VE-cadherin in vitro. We then overexpressed recombinant FLAG-ICAT in human umbilical vein endothelial cells (HUVECs) to study its impact on endothelial barrier function controlled by cell-cell adhesions. The binding of beta-catenin to VE-cadherin was quantified before and after stimulation with histamine along with measurements of transendothelial electrical resistance (TER) and apparent permeability to albumin (P(a)) under the same conditions. The results showed that ICAT bound to beta-catenin and competitively inhibited binding of the VE-cadherin cytoplasmic domain to beta-catenin in a concentration-dependent manner. Overexpression of FLAG-ICAT in endothelial cell monolayers did not affect their basal permeability properties, as indicated by unaltered TER and P(a); however, the magnitude and duration of histamine-induced decreases in TER were significantly augmented. Likewise, the increase in P(a) in the presence of histamine was exacerbated. Overexpression of FLAG-ICAT also significantly decreased the level of beta-catenin-associated VE-cadherin following histamine stimulation. Taken together, these data suggest that inflammatory agents like histamine cause a transient and reversible disruption of binding between beta-catenin and VE-cadherin, during which endothelial permeability is elevated.  相似文献   

20.
Fujikura T  Okubo K 《Peptides》2011,32(2):368-373
Adrenomedullin (AM) is a potent hypotensive and vasodilatory peptide. AM may exert protective actions against the development of many diseases by modulating the blood circulation and body fluid balance. In addition to these functions, it has recently been reported to play important roles in the development of allergy and infections. The purpose of the present study was to demonstrate the existence of AM in the human nasal mucosa and to discuss whether AM might contribute to the pathogenesis of nasal congestion. We measured the total AM concentrations in the nasal discharge. The total AM concentration in the nasal discharge was significantly higher in the non-allergy group (72.1 ± 55.5 fmol/ml) than in the allergy group (37.1 ± 44.2 fmol/ml). By immunohistochemical examination, we identified AM-containing cells in the nasal mucosa from both subjects with and without nasal allergy, and also in nasal polyps. Moreover, those cells were positive for anti-tryptase antibody which recognizes mast cells. In nasal allergy, vasodilatation and increase in vascular permeability are characteristic features of the immediate phase response. Reduced AM levels in the nasal discharge may be associated with attenuation of both of these factors. On the other hand, immunohistochemical analysis demonstrated AM-immunoreactive cells in the chronic phase of rhinosinusitis. In the late and inflammatory phase, mast cells produce AM, which possibly acts as an inhibitor of inflammatory cell migration. In conclusion, AM may be actively secreted into the nasal discharge. AM in the nasal discharge may have protective and anti-inflammatory effects in the nasal mucosa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号