首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
Although previous studies have indicated that N-linked oligosaccharides on lysosomal enzymes in Dictyostelium discoideum are extensively phosphorylated and sulfated, the role of these modifications in the sorting and function of these enzymes remains to be determined. We have used radiolabel pulse-chase, subcellular fractionation, and immunofluorescence microscopy to analyze the transport, processing, secretion, and sorting of two lysosomal enzymes in a mutant, HL244, which is almost completely defective in sulfation. [3H]Mannose-labeled N-linked oligosaccharides were released from immunoprecipitated alpha-mannosidase and beta-glucosidase of HL244 by digestion with peptide: N-glycosidase. The size, Man9-10GlcNAc2, and processing of the neutral species were similar to that found in the wild type, but the anionic oligosaccharides were less charged than those from the wild-type enzymes. All of the negative charges on the oligosaccharides for HL244 were due to the presence of 1, 2, or 3 phosphodiesters and not to sulfate esters. The rate of proteolytic processing of precursor forms of alpha-mannosidase and beta-glucosidase to mature forms in HL244 was identical to wild type. The precursor polypeptides in the mutant and the wild type were membrane associated until being processed to mature forms; therefore, sulfated sugars are not essential for this association. Furthermore, the rate of transport of alpha-mannosidase and beta-glucosidase from the endoplasmic reticulum to the Golgi complex was normal in the mutant as determined by the rate at which the newly synthesized proteins became resistant to the enzyme, endo-beta-N-acetylglucosaminidase H. There was no increase in the percentage of newly synthesized mutant precursors which escaped sorting and were secreted, and the intracellularly retained lysosomal enzymes were properly localized to lysosomes as determined by fractionation of cell organelles on Percoll gradients and immunofluorescence microscopy. However, the mutant secreted lysosomally localized mature forms of the enzymes at 2-fold lower rates than wild-type cells during both growth and during starvation conditions that stimulate secretion. Furthermore, the mutant was more resistant to the effects of chloroquine treatment which results in the missorting and oversecretion of lysosomal enzymes. Together, these results suggest that sulfation of N-linked oligosaccharides is not essential for the transport, processing, or sorting of lysosomal enzymes in D. discoideum, but these modified oligosaccharides may function in the secretion of mature forms of the enzymes from lysosomes.  相似文献   

2.
Lysosomal enzymes from Dictyostelium discoideum contain unusual sulfated N-linked oligosaccharides, whose synthesis has been well studied in vivo. However, little is known about the properties of the pertinent sulfotransferases. To study these transferases, we have prepared a cell-free system which transfers 35SO4 from 3'-phosphoadenosine 5'-phosphosulfate to either endogenous or exogenous acceptors. We found that the 35SO4 was released from macromolecules by protein N-glycanase F to yield a mixture of anionic oligosaccharides with 1-6 negative charges. Some of the labeled molecules contained acid-stable methyl phosphodiesters but none contained phosphomoesters or acid-labile diesters. The sulfate was found in molecules with the acid stability characteristic of esters of primary alcohols. In all these ways, the products resembled those generated in vivo. We also demonstrated that a membrane-associated form of beta-hexosaminidase and the precursor of alpha-mannosidase were among the products. In addition, glycoproteins prepared from a sulfation-deficient mutant strain could act as exogenous acceptors in permeabilized vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号