首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A map location of the gluconate-6-phosphate dehydrogenase (gnd) marker was estimated in Escherichia coli C at approximately 46 min by P1 transduction. The gnd locus appears to lie between the co-transducible histidine and prophage P2 location I markers.  相似文献   

2.
Genes for three enzymes of intermediary sugar metabolism in E. coli, zwf (glucose 6-phosphate dehydrogenase, constitutive), edd (gluconate 6-phosphate dehydrase, inducible), and eda (2-keto-3-deoxygluconate 6-phosphate aldolase, differently inducible) are closely linked on the E. coli genetic map, the overall gene order being man... old... eda. edd. zwf... cheB... uvrC... his. One class of apparent revertants of an eda mutant strain contains a secondary mutation in edd, and some of these mutations are deletions extending into zwf. We have used a series of spontaneous edd-zwf deletions to map a series of point mutants in zwf and thus report the first fine structure map of a gene for a constitutive enzyme (zwf).  相似文献   

3.
The Clarke-Carbon clone bank carrying ColE1-Escherichia coli DNA has been screened by conjugation for complementation of glycolysis and hexose monophosphate shunt mutations. Plasmids were identified for phosphofructokinase (pfkA), triose phosphate isomerase (tpi), phosphoglucose isomerase (pgi), glucose-6-phosphate dehydrogenase (zwf), gluconate-6-phosphate dehydrogenase (gnd), enolase (eno), phosphoglycerate kinase (pgk), and fructose-1,6-P2 aldolase (fda). Enzyme levels for the plasmid-carried gene ranged, for the various plasmids, from 4- to 25-fold the normal level.  相似文献   

4.
Gluconate-6-phosphate dehydrogenase (GND) is genetically determined in Salmonella typhimurium by a locus (gnd) mapping between the somatic antigen (rfb) and histidine (his) operons. The enzyme is constitutive. Strains of Salmonella carrying an F' genetic element which contains the gnd(+) gene have GND activity two to three times that of the wild type. This gene dosage effect was used to determine that the GND reaction is not rate-limiting for the metabolism of glucose by the pentose shunt in S. typhimurium.  相似文献   

5.
The obligatory aerobic acetic acid bacterium Gluconobacter oxydans 621H oxidizes sugars and sugar alcohols primarily in the periplasm, and only a small fraction is metabolized in the cytoplasm. The latter can occur either via the Entner-Doudoroff pathway (EDP) or via the pentose phosphate pathway (PPP). The Embden-Meyerhof pathway is nonfunctional, and a cyclic operation of the tricarboxylic acid cycle is prevented by the absence of succinate dehydrogenase. In this work, the cytoplasmic catabolism of fructose formed by oxidation of mannitol was analyzed with a Δgnd mutant lacking the oxidative PPP and a Δedd Δeda mutant devoid of the EDP. The growth characteristics of the two mutants under controlled conditions with mannitol as the carbon source and enzyme activities showed that the PPP is the main route for cytoplasmic fructose catabolism, whereas the EDP is dispensable and even unfavorable. The Δedd Δeda mutant (lacking 6-phosphogluconate dehydratase and 2-keto-3-deoxy-6-phosphogluconate aldolase) formed 24% more cell mass than the reference strain. In contrast, deletion of gnd (6-phosphogluconate dehydrogenase) severely inhibited growth and caused a strong selection pressure for secondary mutations inactivating glucose-6-phosphate dehydrogenase, thus preventing fructose catabolism via the EDP also. These Δgnd zwf* mutants (with a mutation in the zwf gene causing inactivation of the glucose-6-phosphate dehydrogenase) were almost totally disabled in fructose catabolism but still produced about 14% of the carbon dioxide of the reference strain, possibly by catabolizing substrates from the yeast extract. Overexpression of gnd in the reference strain improved biomass formation in a similar manner as deletion of edd and eda, further confirming the importance of the PPP for cytoplasmic fructose catabolism.  相似文献   

6.
A mutant lacking gluconate-6-phosphate dehydrase (the first enzyme of the Entner-Doudoroff pathway) was isolated after ethyl methane sulfonate mutagenesis of Escherichia coli. Other enzymes of gluconate metabolism (gluconokinase, gluconate-6-phosphate dehydrogenase, and 2-keto-3-deoxygluconate-6-phosphate aldolase) were present in the mutant. When the mutant was grown on gluconate-1-(14)C, alanine isolated from protein was unlabeled, showing that the dehydrase was absent in vivo and that the sole pathway of gluconate metabolism in the mutant was the hexose monophosphate shunt. The mutant grew on gluconate with a doubling time of 155 min, compared with the parent strain's 56 min. On glucose and fructose it grew with normal doubling times. Thus, in E. coli, the Entner-Doudoroff pathway is used for gluconate metabolism but not for glucose metabolism.  相似文献   

7.
8.
Specialized transducing phages for gluconate 6-phosphate dehydrogenase (gnd), a constitutive enzyme in Escherichia coli, have been isolated using a method previously described for other genes. The gnd-his region, carried on an F' episome, was first transposed to tonB. Rare phages carrying gnd were selected, by transduction, from phi80 lysogens of these strains; one phage also carried his (phi80gndhis). From the transductants, high-frequency transducing lysates were obtained; low multiplicity of infection then yielded defective lysogens. tonB deletion analysis of the phi80dgndhis lysogen shows the order of genes in the prophage to be imm80...hisOGD...gnd; according to a marker rescue experiment most phage late genes have been replaced by bacterial deoxyribonucleic acid. A heat-inducible, lysis-defective lambda-phi80 hybrid derivative of phi80dgndhis has been prepared.  相似文献   

9.
10.
Glucose is metabolized in Escherichia coli chiefly via the phosphoglucose isomerase reaction; mutants lacking that enzyme grow slowly on glucose by using the hexose monophosphate shunt. When such a strain is further mutated so as to yield strains unable to grow at all on glucose or on glucose-6-phosphate, the secondary strains are found to lack also activity of glucose-6-phosphate dehydrogenase. The double mutants can be transduced back to glucose positivity; one class of transductants has normal phosphoglucose isomerase activity but no glucose-6-phosphate dehydrogenase. An analogous scheme has been used to select mutants lacking gluconate-6-phosphate dehydrogenase. Here the primary mutant lacks gluconate-6-phosphate dehydrase (an enzyme of the Enter-Doudoroff pathway) and grows slowly on gluconate; gluconate-negative mutants are selected from it. These mutants, lacking the nicotinamide dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase, grow on glucose at rates similar to the wild type. Thus, these enzymes are not essential for glucose metabolism in E. coli.  相似文献   

11.
法尼醇(Farnesol,FOH)是由焦磷酸异戊烯基(IPP)和焦磷酸二甲基烯丙基(DMAPP)合成的法尼酰基焦磷酸盐(FPP)去焦磷酸化作用生成的。在类球红细菌中IPP和DMAPP是由MEP途径生成,而完整的MEP途径需要消耗大量的辅因子NADPH,增加胞内NADPH的量有可能强化FOH的合成。文中从增加NADPH的生成和降低NADPH的消耗这两个策略出发,分别干扰了编码6-磷酸葡萄糖异构酶基因(pgi)和谷氨酸脱氢酶基因(gdhA)的表达,同时强化了磷酸戊糖途径中6-葡萄糖磷酸脱氢酶基因(zwf)和6-葡萄糖酸磷酸脱氢酶基因(gnd)的表达。实验结果表明,经改造的菌株NADPH含量显著增加,干扰菌株中菌株RSpgii的产量较高,为3.91 mg/g,在过表达的菌株中同时过表达zwf和gnd基因的重组菌株(RSzg)的FOH产量提高到了3.43 mg/g。为了获得FOH产量更高的菌株,以RSpgii为出发菌株,分别与zwf和gnd组合调控,获得的菌株RSzgpi的产量达到了最高量为4.48 mg/g,是出发菌株RS-GY2产率的2.24倍。  相似文献   

12.
Specific activities and electrophoretic mobilities of glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase were determined in 38 isolates of the family Enterobacteriaceae and in 10 isolates of the related Pasteurella. The deficiency of glucose-6-phosphate dehydrogenase in P. pestis was verified. Enzymes obtained from different strains of the same species exhibited an unexpected degree of heterogeneity. For example, 8 and 11 apparent variants of glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase, respectively, were found in 14 strains of Escherichia coli. Although similar frequencies of heterogeneity were noted in 7 strains of P. pseudotuberculosis, 5 species of Shigella, and 8 species of Salmonella, differences in mobility were generally small in comparison with those observed between strains of E. coli. Values obtained for the pasteurellae, shigellae, and salmonellae, thus fell within narrow ranges that may prove typical for the genera. However, most of these ranges, as well as many values observed for single species of other genera, were overlapped by the wide range recorded for E. coli. The significance of this observation was discussed with respect to the relative age and taxonomic position of the organisms in question. The method could be used to distinguish between most wild-type strains of the same species and should thus facilitate investigations of genetic transfer and epidemiology.  相似文献   

13.
14.
The ratio of activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase (G6P DH/6PG DH), and the contents of glucose-6-phosphate (G6P), 6-phosphogluconate (6PG) and fructose-6-phosphate (F6P) were studied at various stages of potato virus Y (PVY) multiplication in Nicotiana tabacum cv. Samsun. G6P DH/6PG DH increased through the experiment from 0.42 to 0.53 in leaves of healthy tobacco, and up to 0.59 in PVY systemically infected leaves. However, these ratios in the ruptured protoplast preparations, and the chloroplast and cytosol fractions of healthy protoplasts were similar to that from infected ones. The ratio lower than 1, found in the healthy and/or PVY- infected leaf tissues and in the infected protoplasts as well, confirms the assumption that G6P DH is the control enzyme of oxidative pentosephosphate pathway not only in the healthy but also in the infected plants. The contents of G6P, 6PG and F6P in the period of the highest PVY multiplication were strongly decreased (to 30 – 50 % when compared with control healthy leaves) and were negatively correlated with the G6P DH and 6PG DH activities.  相似文献   

15.
A series of independent Escherichia coli K eductants has been isolated and tested to determine the extent of their deletions. The deletions cover the P2 prophage in location H, the his operon, a suppressor of the recBC phenotype (sbcB), the gene for gluconate-6-phosphate dehydrogenase (gnd), a locus involved in cell wall synthesis (rfb), and in some cases all or part of genes involved in methylgalactoside uptake (mglP). One end of the deletion, the P2 prophage end, appears to be the same for all eductants. The other end, however, can be located before, within, and after the mglP locus.  相似文献   

16.
17.
18.
Five of the genes required for phosphorylative catabolism of glucose in Pseudomonas aeruginosa were ordered on two different chromosomal fragments. Analysis of a previously isolated 6.0-kb EcoRI fragment containing three structural genes showed that the genes were present on a 4.6-kb fragment in the order glucose-binding protein (gltB)-glucokinase (glk)-6-phosphogluconate dehydratase (edd). Two genes, glucose-6-phosphate dehydrogenase (zwf) and 2-keto-3-deoxy-6-phosphogluconate aldolase (eda), shown by transductional analysis to be linked to gltB and edd, were cloned on a separate 11-kb BamHI chromosomal DNA fragment and then subcloned and ordered on a 7-kb fragment. The 6.0-kb EcoRI fragment had been shown to complement a regulatory mutation, hexR, which caused noninducibility of four glucose catabolic enzymes. In this study, hexR was mapped coincident with edd. A second regulatory function, hexC, was cloned within a 0.6-kb fragment contiguous to the edd gene but containing none of the structural genes. The phenotypic effect of the hexC locus, when present on a multicopy plasmid, was elevated expression of glucokinase, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase activities in the absence of inducer.  相似文献   

19.
purF mutants of Salmonella typhimurium are known to require a source of both purine and thiamine; however, exogenous pantothenate may be substituted for the thiamine requirement. We show here that the effect of pantothenate is prevented by blocks in the oxidative pentose phosphate pathway, gnd (encoding gluconate 6-phosphate [6-P] dehydrogenase) or zwf (encoding glucose 6-P dehydrogenase). We further show that the defects caused by these mutations can be overcome by increasing ribose 5-P, suggesting that ribose 5-P may play a role in the ability of pantothenate to substitute for thiamine.  相似文献   

20.
A novel genetic change leading to increased activity of 6-phosphogluconate dehydrogenase (6PGD) in E. coli has been observed. The mutation is a deletion of approximately 0.4 kilobase pairs occurring between the structural gene of 6PGD (gnd) and one copy of an insertion element (IS5) found normally in E. coli K12 a few hundred base pairs upstream (counterclockwise) from gnd at 44 minutes on the conventional genetic map. The deletion is associated with a threefold higher activity of 6PGD and a 57% increase in the maximum growth rate when cells are grown in gluconate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号