首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rabbit epiphyseal carilage tissue has been shown to convert testosterone (T) to dihydrotestosterone (DHT). In this report, the metabolic conversion of T into DHT is shown to be age-dependent, being most active in cartilage from animal at the age of gonadal maturation. Human cartilage from newborn and prepubertal children is also shown to convert T into DHT and—to a lesser extent—to estradiol.

Low concentrations of DHT and 17β-estradiol (E2) (10−11−10−9 M) were also shown to stimulate in vitro cartilage cells from boys and girls respectively. As previously shown for cultured rabbit chondrocytes, the stimulating effects of both hormones on human chondrocytes was age-dependent. Cartilage cells derived from children up to one year old did not respond, while cells from boys and girls in the early phase of puberty responded best.

These data indicate that human cartilage tissue in vivo, contains both 5-reductase and aromatase activities during post-natal skeletal growth. Androgens may act on cartilage after their metabolic conversion to estrogens. The mechanism of age-dependency of both cartilage androgen enzymatic activities and chondrocyte responsiveness to sex steroids in vitro remains to be explained.  相似文献   


3.
To study mechanisms of aromatase inhibition in brain cells, a highly effective non-steroidal aromatase inhibitor (Fadrozole; 4-[5,6,7,8-tetra-hydroimidazo-(1,5-a)-pyridin-5-yl] benzonitrile HCl; CGS 16949A) was compared with endogenous C-19 steroids, known to be formed in the preoptic area, which inhibit oestrogen formation. Using a sensitive in vitro tritiated water assay for aromatase activity in avian (dove) preoptic tissue, the order of potency, with testosterone as substrate was: Fadrozole (Ki < 1 × 10−9 M) > 4-androstenedione 5-androstanedione > 5-dihydrotestosterone (Ki = 6 × 10−8 M) > 5β-androstanedione > 5β-dihydrotestosterone (Ki = 3.5 × 10−7 M) > 5-androstane-3, 17β-diol (Ki = 5 × 10−6 M) > 5β-androstane-3β,17β-diol. Five other steroids, 5β-androstane-3,17β-diol, 5-androstane-3β,17β-diol, progesterone, oestradiol and oestrone, showed no inhibition at 10−4 M. The kinetics indicate that endogenous C-19 steroids show similar competitive inhibition of the aromatase as Fadrozole. Mouse (BALB/c) preoptic aromatase was also inhibited by Fadrozole. We conclude that endogenous C-19 metabolites of testosterone are effective inhibitors of the brain aromatase, and suggest that they bind competitively at the same active site as Fadrozole.  相似文献   

4.
5.
6.
7.
We have studied androgen metabolism in L6 rat myoblasts. 4-androstene-3,17-dione (Adione), testosterone, 5 alpha-dihydrotestosterone (DHT), and 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol) were used for substrates and the amounts of metabolites formed from the respective substrates in the medium were determined. Conversion of Adione to testosterone was dominant over the reverse conversion. DHT formation from testosterone was low and did not change with the duration of incubation, whereas 3 alpha-diol formation increased in a time-dependent manner. Major metabolite of testosterone was not DHT but 3 alpha-diol. A large amount of 3 alpha-diol was formed from DHT, however, DHT formation from 3 alpha-diol was very low. These data indicate that L6 cells have high 5 alpha-reductase activity and suggest that DHT formed from testosterone is rapidly metabolized to 3 alpha-diol in these cells.  相似文献   

8.
The ability of the human neuroblastoma cell line SH-SY5Y to metabolize androgens and progesterone was studied by incubating the cells in the presence of labeled testosterone (T) or progesterone (P) to measure, respectively, the formation of dihydrotestosterone (DHT) or dihydroprogesterone (DHP) (5-reductase activitiy). The 3-hydroxysteroid dehydrogenase activity was studied by evaluating the conversion of labeled DHT into 5-androstan-3, 17β-diol (3-diol). The results show that undifferentiated neuroblastoma cells posses a significant 5-reductase activity, as shown by the considerable conversion of T into DHT; moreover, this enzymatic activity seems to be significantly stimulated following cell differentiation induced by the phorbol ester TPA, but not after differentiation induced by retinoic acid (RA). The 5-reductase(s) present in SH-SY5Y cells is also able to convert P into DHP. In undifferentiated cells, this conversion was about 8 times higher than that of T into DHT. Under the influences of TPA and RA, the formation of DHP followed the same pattern observed for the formation of DHT. SH-SY5Y cells also appear to possess the enzyme 3-hydroxysteroid dehydrogenase, since they are able to convert DHT into 3-diol. This enzymatic activity is not altered following TPA-induced differentiation and appears to be decreased following treatment with RA. It is suggested that the SH-SY5Y cell line may represent a useful “in vitro” model for the study of the mechanisms involved in the control of androgen and P metabolism in nervous cells.  相似文献   

9.
The authors incubated adrenal mitochondria to study the in vitro action of cortisol and testosterone on the transformation of corticosterone and 18-hydroxycorticosterone into aldosterone. The results show that cortisol at concentrations of 5 × 10−6 and 10−4 M inhibit the conversion of corticosterone into aldosterone by 23.6 to 90%; testosterone 5 × 10−5 and 10−4 M inhibit the reaction by 78.4 and 87.2%, respectively. The inhibition of the conversion of 18-hydroxycorticosterone into aldosterone is 12.5 to 91% by cortisol with concentrations ranging from 5 × 10−7 to 5 × 10−5 M and testosterone 5 × 10−5 and 10−4 M inhibits the reaction by 87.3 and 91%, respectively. Aldosterone (10−8 and 10−6 M) does not inhibit aldosterone biosynthesis from corticosterone or 18-hydroxycorticosterone. It thus appears that cortisol and testosterone have an effect on the aldosterone biosynthesis pathways in mitochondria. This action may be located at the binding site of the cytochrome P450 11β, which catalyzes all hydroxylation steps in the mineralocorticoid biosynthesis pathway. Because cortisol and testosterone may interfere with aldosterone biosynthesis, and since functional zonation is expected in adrenal carcinomas, the presence of these steroids in substantial amounts could explain the very low plasma aldosterone level usually observed, in adrenal carcinomas studies in our laboratory.  相似文献   

10.
Potential activities of androgen metabolizing enzymes in human prostate   总被引:2,自引:0,他引:2  
The entire androgen metabolism of the human prostate is an integral part of the DHT mediated cellular processes, which eventually give rise to the androgen responsiveness of the prostate. Therefore, the potential activities of various androgen metabolizing enzymes were studied. Moreover, the impact of aging on the androgen metabolism and the inhibition of 5-reductase by finasteride were studied. In epithelium (E) and stroma (S) of normal (NPR) and hyperplastic human prostate (BPH), for each enzyme being involved in the conversion either of testosterone via DHT, 3- and 3β-diol to the C19O3-triols or from testosterone to androstenedione and vice versa, the amount (Vmax) and Michaelis constant (Km) were determined by Lineweaver-Burk plots. Furthermore, Vmax/Km quotients were calculated, which served as an index for the potential enzyme activity. 17 enzymes showed a mean Vmax/Km ≥ 0.10. The top four were the 5-reductases in E and S of NPR and BPH. Among those, the highest activity was found in E of NPR (1.6 ± 0.2). Moreover, in E a significant age-dependent decrease of 5-reductase activity occurred, whereas in stroma rather constant activities were found over the whole age range. Similar age-dependent alterations were found for the cellular DHT levels. Finally, the finasteride inhibition of 5-reductase (IC50;nM) was stronger in E (35 ± 17) than in S (126 ± 15). In conclusion, 5-reductase is: (a) the outstanding androgen metabolizing enzyme in NPR and BPH; (b) dictating the DHT enrichment in the prostate; (c) under the impact of aging; and (d) preferentially inhibited by finasteride in E.  相似文献   

11.
The effect of progesterone on the differentiation of the 3T3-L1 preadipocytes was investigated and compared with other sex steroids (estradiol and testosterone), with cortisol, with the synthetic progestin R5020 and with the progestin/glucocorticoid antagonist RU38486. At 10−8 M, progesterone stimulated the activity of glycerol-3-phosphate dehydrogenase and triglyceride deposition. Progesterone, R5020, cortisol, and RU38486 increased triglycerides about 2-fold at 10−7 M. Only minimal effects were observed with testosterone and estradiol even at 10−6 M. When the cells were cultured in presence of 10−5 M metyrapone the effect of progesterone was unchanged, suggesting that the progesterone was not metabolized to a glucocorticoid. Progesterone, R5020 and RU38486 competed efficiently with [3H]dexamethasone for the glucocorticoid receptor in 3T3-L1 cytosol. These results indicate a significant, reproducible dose-dependent effect of progestins on differentiation of the preadipocytes, which appears to be mediated via the glucocorticoid receptor.  相似文献   

12.
We have investigated the role of autocrine/paracrine TGF-β secretion in the regulation of cell growth by androgens as demonstrated by its inhibition by two androgen response modifiers; the nonsteroidal antiandrogen hydroxyflutamide (OHF), believed to act by inhibiting androgen binding to androgen receptors, or finasteride, an inhibitor of 5α-reductase, the enzyme necessary for the conversion of testosterone to 5α-dihydrotestosterone (DHT), using the nontumorigenic rat prostatic epithelial cell line NRP-152. Growth of these cells was stimulated three- to sixfold over control by either testosterone or DHT under serum-free culture conditions. This was accompanied by a two- to threefold decrease in the secretion rate of TGF-β1, -β2, and -β3. Finasteride reversed the ability of testosterone but not DHT to stimulate growth and downregulate expression of TGF-β1, -β2, and -β3 in a dose-dependent fashion, suggesting that this activity of testosterone required its conversion to DHT. OHF antagonized the stimulatory effects of DHT on NRP-152 cell growth but could reverse the inhibitory effects of DHT only on TGF-β2 and TGF-β3 and not TGF-β1 secretion. This suggests that either TGF-β1 regulation by DHT or the androgen antagonism of OHF occurs independent of androgen receptor binding. Neutralizing antibodies to TGF-β (pantropic and isoform-specific) were able to block the ability of finasteride to antagonize the effects of testosterone nearly completely while only partially inhibiting the antiandrogenic effects of OHF. Thus, the ability of androgens to stimulate growth of NRP-152 cells involves the downregulation of the production of TGF-β1, -β2, and -β3 in addition to other growth-stimulatory mechanisms. J. Cell. Physiol. 175:184–192, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    13.
    Chen Q  Kaji H  Sugimoto T  Chihara K 《FEBS letters》2001,491(1-2):91-93
    Androgens play an important role in the regulation of bone metabolism in animals and humans. The present study was performed to investigate whether androgens would affect osteoclast formation stimulated by parathyroid hormone (PTH) in mouse bone cell cultures and its mechanism. Testosterone as well as alpha-dihydrotestosterone (DHT) concentration-dependently inhibited osteoclast formation induced by PTH-(1-34). 10(-8) M ICI 182780, an estrogen receptor inhibitor, did not affect PTH-induced osteoclast formation antagonized by 10(-8) M testosterone, although it completely antagonized the effects of 10(-8) M 17beta-estradiol. Moreover, 3 microM 4-androsten-4-ol-3,17-dione, an aromatase inhibitor, did not affect PTH-induced osteoclast formation antagonized by testosterone. Hydroxyflutamide, an androgen receptor antagonist, concentration-dependently antagonized the inhibitory effects of testosterone as well as DHT on PTH-stimulated osteoclast formation. In conclusion, the present study first demonstrated that testosterone inhibited osteoclast formation stimulated by PTH through the androgen receptor, but not through the production of intrinsic estrogen in mouse bone cell cultures.  相似文献   

    14.
    The growth dependence of many breast cancers on oestrogen has been exploited therapeutically by oestrogen deprivation, but almost all patients eventually develop resistance largely by unknown mechanisms. Wild-type (WT) MCF-7 cells were cultured in oestrogen-deficient medium for 90 weeks in order to establish a long-term oestrogen-deprived MCF-7 (LTED) which eventually became independent of exogenous oestrogen for growth. After 15 weeks of quiescence (LTED-Q), basal growth rate increased in parallel with increasing oestrogen sensitivity. While 10−9 M oestradiol (E2) maximally stimulated WT growth, the hypersensitive LTED (LTED-H) were maximally growth stimulated by 10−13 M E2. By week 50, hypersensitivity was apparently lost and the cells became oestrogen independent (LTED-I), although the pure antioestrogen ICI182780 still inhibited cell growth and reversed the inhibitory effect of 10−9 M E2 at 10−12 to 10−7 M. Tamoxifen (10−7 to 10−6 M) had a partial agonist effect on WT, but had no stimulatory effect on LTED. Whilst LTED cells have a low progesterone receptor (PgR) expression in all phases, oestrogen receptor (ER) a expression was, on average, elevated five- and seven-fold in LTED-H and LTED-I, respectively, and serine118 was phosphorylated. ERβ expression was up-regulated and the levels of insulin receptor substrate 1 (IRS-1) remained low throughout all phases. The levels of RIP140 mRNA appeared to decrease to approximately 50% of the WT message in LTED-Q and remained constant into the hypersensitive phase. No significant changes were observed in the expression of SUG-1, TIF-1 and SMRT in LTED. The overall changes in nuclear receptor interacting proteins do not appear to be involved in the hypersensitivity. Thus, the resistance of these human breast cancer cells to oestrogen-deprivation appears to be due to acquired hypersensitivity which may be explained in part by increased levels of and phosphorylated ER.  相似文献   

    15.
    Dehydroepiandrosterone (DHEA), the most abundant steroid in human circulating blood, is metabolized to sex hormones and other C19-steroids. Our previous collaborative study demonstrated that androst-5-ene-3beta,17beta-diol (Adiol) and androst-4-ene-3,17-dione (Adione), metabolites of DHEA, can activate androgen receptor (AR) target genes. Adiol is maintained at a high concentration in prostate cancer tissue; even after androgen deprivation therapy and its androgen activity is not inhibited by the antiandrogens currently used to treat prostate cancer patients. We have synthesized possible metabolites of DHEA and several synthetic analogues and evaluated their role in androgen receptor transactivation to identify AR modulators. Steroids with low androgenic potential in PC-3 cell lines were evaluated for anti-dihydrotestosterone (DHT) and anti-Adiol activity. We discovered three potent antiandrogens: 3beta-acetoxyandrosta-1,5-diene-17-one 17-ethylene ketal (ADEK), androsta-1,4-diene-3,17-dione 17-ethylene ketal (OAK), and 3beta-hydroxyandrosta-5,16-diene (HAD) that antagonized the effects of DHT as well as of Adiol on the growth of LNCaP cells and on the expression of prostate-specific antigen (PSA). In vivo tests of these compounds will reveal their potential as potent antiandrogens for the treatment of prostate cancer.  相似文献   

    16.
    Tams Zakr  Mikls Tth 《Steroids》1977,30(6):751-764
    Postmitochondrial supernatant (PMS) (1) has been prepared from the homogenate of rat seminal vesicles and the characteristics of the binding reaction of 5-dihydrotestosterone (DHT) to the cytoplasmic androgen receptor have been studied using a charcoal adsorption procedure.

    At 0°C apparent equilibrium of binding is reached between 60 and 90 min of incubation but no exchange of bound (3H)DHT can be observed in the presence of a 100-fold excess of unlabelled DHT.

    Saturation analysis shows a single class of independent binding sites for DHT with an apparent dissociation constant of 1 nM at 0°C and 2 nM at 25°C. Concentration of binding sites is in the range of 25–80 fmoles/mg protein.

    When not occupied by DHT the receptor molecules are inactivated spontaneously following first order reaction kinetics. A rate constant of 0.27 hours−1 at 0°C was determined for the inactivation reaction.

    In the (3H)DHT-binding reaction testosterone and 19-nortestosterone are even more efficient competitors than unlabelled DHT, while hydrocortisone does not compete at all. On the other hand significant binding of (3H) testosterone could not be demonstrated.

    The (3H)DHT-receptor complex is precipitated from the cytosol by 0 to 33% saturation of ammonium sulphate and sediments as a single, 3.1 S peak in sucrose gradients prepared in 0.4 M NaCl.  相似文献   


    17.
    This paper summarizes the most recent data obtained in the authors' laboratory on the metabolism of testosterone and progesterone in neurons, in the glia, and in neuroblastoma cells. The activities of the 5α-reductase (the enzyme that converts testosterone into dihydrotestosterone, DHT), and of the 3α-hydroxysteroid dehydrogenase (the enzyme that converts DHT into 5α-androstane-3α,17β-diol, 3α-diol) have been first evaluated in primary cultures of neurons, oligodendrocytes and type-1 and -2 astrocytes, obtained from the fetal or neonatal rat brain. All the cultures were used on the fifth day. The formation of DHT or 3α-diol was evaluated incubating the different cultures with labeled testosterone or DHT as substrates. The results obtained indicate that the formation of DHT takes place preferentially in neurons; however, type-2 astrocytes and oligodendrocytes also possess considerable 5α-reductase activity, while type-1 astrocytes show a much lower enzymatic concentration. A completely different localization was observed for 3α-hydroxysteroid dehydrogenase; the formation of 3α-diol appears to be prevalently, if not exclusively, present in type-1 astrocytes; 3α-diol is formed in very low yields by neurons, type-2 astrocytes and oligodendrocytes. The compartmentalization of two strictly correlated enzymes (5α-reductase and 3α-hydroxysteroid dehydrogenase) in separate central nervous system (CNS) cell populations suggests the simultaneous participation of neurons and glial cells in the 5α-reductive metabolism of testosterone. Subsequently it has been shown that, similarly to what happens when testosterone is used as the substrate, the 5α-reductase which metabolizes progesterone into 5α-pregnane-3,20-dione (DHP) shows a significantly higher activity in neurons than in glial cells; however, type-1 and -2 astrocytes as well as oligodendrocytes also possess some ability to 5α-reduce progesterone. On the other hand, 3α-hydroxysteroid dehydrogenase, the enzyme which converts DHP into 5α-pregnane-3α-ol-20-one, appears to be present mainly in type-1 astrocytes; much lower levels of this enzyme are present in neurons and in type-2 astrocytes. At variance with the previous results obtained using androgens as precursors, oligodendrocytes show considerable 3α-hydroxysteroid dehydrogenase activity, even if this is statistically lower than that present in type-1 astrocytes. The existence of isoforms of the enzyme involved in androgen and progesterone metabolism is discussed.Finally, the ability of the human neuroblastoma cell line SH-SY5Y to metabolize androgens and progesterone was studied incubating the cells in the presence of labeled testosterone or progesterone to measure, respectively, the formation of DHT or DHP (5α-reductase activity). 3α-Hydroxysteroid dehydrogenase activity was studied by evaluating the conversion of labeled DHT into 3α-diol. The results demonstrate that undifferentiated neuroblastoma cells possess a significant 5α-reductase activity, as shown by the considerable conversion of testosterone into DHT; moreover, this enzymatic activity seems to be significantly stimulated following cell differentiation induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), but not after differentiation induced by retinoic acid (RA). The 5α-reductase present in SH-SY5Y cells is also able to convert progesterone into DHP. In undifferentiated cell, this conversion is about 8 times higher than that of testosterone into DHT. Under the influences of TPA and RA, the formation of DHP follows the same pattern observed for that of DHT. SH-SY5Y cells also appear to possess the enzyme 3α-hydroxysteroid dehydrogenase, since they are able to convert DHT into 3α-diol. This enzymatic activity is not altered following TPA-induced differentiation, and appears to be decreased following treatment with RA. It is suggested that the SH-SY5Y cell line may represent a useful “in vitro” model for the study of the mechanisms involved in the control of androgen and progesterone metabolism in nervous cells.  相似文献   

    18.
    Primer extension analysis reveals the presence of different forms of mRNA species for rat type I 5α-reductase. Using a 5α-reductase cDNA probe to screen the rat liver λgt11 cDNA library, we isolated cDNA clones that have 4 additional amino acids in the NH2-terminal region as compared with the previously reported sequence for rat type I 5α-reductase. These four additional amino acids elongate the rat type I 5α-reductase amino acid sequence to 259 amino acids, the same number as in human type I 5α-reductase, with which it shares 60% identity. Expression of the long and short rat type I 5α-reductase by transfection in human adrenal adenocarcinoma cells, SW-13 cells, indicated that the long cDNA encoded a protein with a higher affinity for the substrate than the short cDNA. To determine the effect of pituitary hormones and dihydrotestosterone (DHT), the mRNA levels in the livers of rats treated with pituitary implants, hypophysectomized, castrated, and castrated coupled with DHT treatment were quantified by dot-blot hybridization assay using rat type I 5α-reductase cDNA as probes. The results demonstrated that rat type I 5α-reductase mRNA is stimulated by pituitary hormones and castration but is decreased by DHT and hypophysectomy.  相似文献   

    19.
    Type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) is the major enzyme in the prostate that reduces 4-androstene-3,17-dione (Δ(4)-Adione) to the androgen receptor (AR) ligand testosterone. AKR1C3 is upregulated in prostate cancer (PCa) and castrate resistant prostate cancer (CRPC) that develops after androgen deprivation therapy. PCa and CRPC often depend on intratumoral androgen biosynthesis and upregulation of AKR1C3 could contribute to intracellular synthesis of AR ligands and stimulation of proliferation through AR signaling. To test this hypothesis, we developed an LNCaP prostate cancer cell line overexpressing AKR1C3 (LNCaP-AKR1C3) and compared its metabolic and proliferative responses to Δ(4)-Adione treatment with that of the parental, AKR1C3 negative LNCaP cells. In LNCaP and LNCaP-AKR1C3 cells, metabolism proceeded via 5α-reduction to form 5α-androstane-3,17-dione and then (epi)androsterone-3-glucuronide. LNCaP-AKR1C3 cells made significantly higher amounts of testosterone-17β-glucuronide. When 5α-reductase was inhibited by finasteride, the production of testosterone-17β-glucuronide was further elevated in LNCaP-AKR1C3 cells. When AKR1C3 activity was inhibited with indomethacin the production of testosterone-17β-glucuronide was significantly decreased. Δ(4)-Adione treatment stimulated cell proliferation in both cell lines. Finasteride inhibited LNCaP cell proliferation, consistent with 5α-androstane-3,17-dione acting as the major metabolite that stimulates growth by binding to the mutated AR. However, LNCaP-AKR1C3 cells were resistant to the growth inhibitory properties of finasteride, consistent with the diversion of Δ(4)-Adione metabolism from 5α-reduced androgens to increased formation of testosterone. Indomethacin did not result in differences in Δ(4)-Adione induced proliferation since this treatment led to the same metabolic profile in LNCaP and LNCaP-AKR1C3 cells. We conclude that AKR1C3 overexpression diverts androgen metabolism to testosterone that results in proliferation in androgen sensitive prostate cancer. This effect is seen despite high levels of uridine glucuronosyl transferases suggesting that AKR1C3 activity can surmount the effects of this elimination pathway. Treatment options in prostate cancer that target 5α-reductase where AKR1C3 co-exists may be less effective due to the diversion of Δ(4)-Adione to testosterone.  相似文献   

    20.
    VIP dose-dependently increased basal, but not submaximally ACTH (10−10 M)-stimulated, aldosterone (ALDO) and corticosterone (B) secretion of dispersed rat capsular and inner adrenocortical cells, respectively. The maximal stimulatory effect (60–70% rise) was obtained with a VIP concentration of 10−8 M. [4-Cl-D-Phe6,Leu17]-VIP, a VIP-receptor antagonist (VIP-A), and corticotropin inhibiting peptide (CIP), an ACTH receptor antagonist (both 10−6 M), completely annulled VIP (10−8M)-evoked rises in basal ALDO and corticosterone secretions. The ACTH (10−10 M)-enhanced (about 5-fold) production of both hormones was completely reversed by CIP (10−6 M) and only partially reduced (about −30%) by VIP-A (10−6 M). The hypothesis is advanced that the weak secretagogue effect of VIP on dispersed rat capsular and inner adrenocortical cells may be due to its positive interaction with ACTH receptors.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号