首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In the Drosophila segmentation hierarchy, periodic expression of pair-rule genes translates gradients of regional information from maternal and gap genes into the segmental expression of segment polarity genes. In Tribolium, homologs of almost all the eight canonical Drosophila pair-rule genes are expressed in pair-rule domains, but only five have pair-rule functions. even-skipped, runt and odd-skipped act as primary pair-rule genes, while the functions of paired (prd) and sloppy-paired (slp) are secondary. Since secondary pair-rule genes directly regulate segment polarity genes in Drosophila, we analyzed Tc-prd and Tc-slp to determine the extent to which this paradigm is conserved in Tribolium. We found that the role of prd is conserved between Drosophila and Tribolium; it is required in both insects to activate engrailed in odd-numbered parasegments and wingless (wg) in even-numbered parasegments. Similarly, slp is required to activate wg in alternate parasegments and to maintain the remaining wg stripes in both insects. However, the parasegmental register for Tc-slp is opposite that of Drosophila slp1. Thus, while prd is functionally conserved, the fact that the register of slp function has evolved differently in the lineages leading to Drosophila and Tribolium reveals an unprecedented flexibility in pair-rule patterning.  相似文献   

3.
4.
Body structures of Drosophila develop through transient developmental units, termed parasegments, with boundaries lying between the adjacent expression domains of wingless and engrailed. Parasegments are transformed into the morphologically distinct segments that remain fixed. Segment borders are established adjacent and posterior to each engrailed domain. They are marked by single rows of stripe expressing cells that develop into epidermal muscle attachment sites. We show that the positioning of these cells is achieved through repression of Hedgehog signal transduction by Wingless signaling at the parasegment boundary. The nuclear mediators of the two signaling pathways, Cubitus interruptus and Pangolin, function as activator and symmetry-breaking repressor of stripe expression, respectively.  相似文献   

5.
Kankel MW  Duncan DM  Duncan I 《Genetics》2004,168(1):161-180
The pair-rule gene fushi tarazu (ftz) of Drosophila is expressed at the blastoderm stage in seven stripes that serve to define the even-numbered parasegments. ftz encodes a DNA-binding homeodomain protein and is known to regulate genes of the segment polarity, homeotic, and pair-rule classes. Despite intensive analysis in a number of laboratories, how ftz is regulated and how it controls its targets are still poorly understood. To help understand these processes, we conducted a screen to identify dominant mutations that enhance the lethality of a ftz temperature-sensitive mutant. Twenty-six enhancers were isolated, which define 21 genes. All but one of the mutations recovered show a maternal effect in their interaction with ftz. Three of the enhancers proved to be alleles of the known ftz protein cofactor gene ftz-f1, demonstrating the efficacy of the screen. Four enhancers are alleles of Atrophin (Atro), the Drosophila homolog of the human gene responsible for the neurodegenerative disease dentatorubral-pallidoluysian atrophy. Embryos from Atro mutant germ-line mothers lack the even-numbered (ftz-dependent) engrailed stripes and show strong ftz-like segmentation defects. These defects likely result from a reduction in Even-skipped (Eve) repression ability, as Atro has been shown to function as a corepressor for Eve. In this study, we present evidence that Atro is also a member of the trithorax group (trxG) of Hox gene regulators. Atro appears to be particularly closely related in function to the trxG gene osa, which encodes a component of the brahma chromatin remodeling complex. One additional gene was identified that causes pair-rule segmentation defects in embryos from homozygous mutant germ-line mothers. The single allele of this gene, called bek, also causes nuclear abnormalities similar to those caused by alleles of the Trithorax-like gene, which encodes the GAGA factor.  相似文献   

6.
Spiders belong to the chelicerates, which is a basal arthropod group. To shed more light on the evolution of the segmentation process, orthologs of the Drosophila segment polarity genes engrailed, wingless/Wnt and cubitus interruptus have been recovered from the spider Cupiennius salei. The spider has two engrailed genes. The expression of Cs-engrailed-1 is reminiscent of engrailed expression in insects and crustaceans, suggesting that this gene is regulated in a similar way. This is different for the second spider engrailed gene, Cs-engrailed-2, which is expressed at the posterior cap of the embryo from which stripes split off, suggesting a different mode of regulation. Nevertheless, the Cs-engrailed-2 stripes eventually define the same border as the Cs-engrailed-1 stripes. The spider wingless/Wnt genes are expressed in different patterns from their orthologs in insects and crustaceans. The Cs-wingless gene is expressed in iterated stripes just anterior to the engrailed stripes, but is not expressed in the most ventral region of the germ band. However, Cs-Wnt5-1 appears to act in this ventral region. Cs-wingless and Cs-Wnt5-1 together seem to perform the role of insect wingless. Although there are differences, the wingless/Wnt-expressing cells and en-expressing cells seem to define an important boundary that is conserved among arthropods. This boundary may match the parasegmental compartment boundary and is even visible morphologically in the spider embryo. An additional piece of evidence for a parasegmental organization comes from the expression domains of the Hox genes that are confined to the boundaries, as molecularly defined by the engrailed and wingless/Wnt genes. Parasegments, therefore, are presumably important functional units and conserved entities in arthropod development and form an ancestral character of arthropods. The lack of by engrailed and wingless/Wnt-defined boundaries in other segmented phyla does not support a common origin of segmentation.  相似文献   

7.
8.
9.
10.
11.
Expression of engrailed proteins in arthropods, annelids, and chordates   总被引:57,自引:0,他引:57  
engrailed is a homeobox gene that has an important role in Drosophila segmentation. Genes homologous to engrailed have been identified in several other organisms. Here we describe a monoclonal antibody that recognizes a conserved epitope in the homeodomain of engrailed proteins of a number of different arthropods, annelids, and chordates; we use this antibody to isolate the grasshopper engrailed gene. In Drosophila embryos, the antibody reveals engrailed protein in the posterior portion of each segment during segmentation, and in a segmentally reiterated subset of neuronal cells during neurogenesis. Other arthropods, including grasshopper and two crustaceans, have similar patterns of engrailed expression. However, these patterns of expression are not shared by the annelids or chordates we examined. Our results provide the most comprehensive view that has been obtained of how expression patterns of a regulatory gene vary during evolution. On the basis of these patterns, we suggest that engrailed is a gene whose ancestral function was in neurogenesis and whose function was co-opted during the evolution of segmentation in the arthropods, but not in the annelids and chordates.  相似文献   

12.
13.
14.
Recent studies on insect patterning suggest that the genetic hierarchy may be roughly conserved in phylogenetically divergent species, but pair-rule genes may not function identically in all insects. In order to understand potential evolutionary changes in the role of the pair-rule genes, a Bombyx even-skipped homolog was cloned and its expression pattern during early embryogenesis studied. Eight stripes of Bombyx even-skipped were progressively expressed in an antero–posterior order. Later, these stripes disappeared anteriorly. Under this detection system, Bombyx even-skipped stripes clearly do not resolve into the corre sponding secondary stripes, an obvious difference from Drosophila and Tribolium . These results suggest that Bombyx even-skipped may serve a double-segment defining role and may determine the odd-numbered engrailed stripes.  相似文献   

15.
Expression of engrailed during segmentation in grasshopper and crayfish   总被引:15,自引:0,他引:15  
We have used a monoclonal antibody that recognizes engrailed proteins to compare the process of segmentation in grasshopper, crayfish, and Drosophila. Drosophila embryos rapidly generate metameres during an embryonic stage characterized by the absence of cell division. In contrast, many other arthropod embryos, such as those of more primitive insects and crustaceans, generate metameres gradually and sequentially, as cell proliferation causes caudal elongation. In all three organisms, the pattern of engrailed expression at the segmented germ band stage is similar, and the parasegments are the first metameres to form. Nevertheless, the way in which the engrailed pattern is generated differs and reflects the differences in how these organisms generate their metameres. These differences call into question what role homologues of the Drosophila pair-rule segmentation genes might play in other arthropods that generate metameres sequentially.  相似文献   

16.
Embryos of higher metazoans are divided into repeating units early in development. In Drosophila, the earliest segmental units to form are the parasegments. Parasegments are initially defined by alternating stripes of expression of the fushi-tarazu and even-skipped genes. How fushi-tarazu and even-skipped define the parasegment boundaries, and how parasegments are lost when fushi-tarazu or even-skipped fail to function correctly, have never been fully or properly explained. Here we show that parasegment widths are defined early by the relative levels of fushi-tarazu and even-skipped at stripe junctions. Changing these levels results in alternating wide and narrow parasegments. When shifted by 30% or more, the enlarged parasegments remain enlarged and the reduced parasegments are lost. Loss of the reduced parasegments occurs in three steps; delamination of cells from the epithelial layer, apoptosis of the delaminated cells and finally apoptosis of inappropriate cells remaining at the surface. The establishment and maintenance of vertebrate metameres may be governed by similar processes and properties.  相似文献   

17.
Nervous system-specific eve mutants were created by removing regulatory elements from a 16 kb transgene capable of complete rescue of normal eve function. When transgenes lacking the regulatory element for either RP2+a/pCC, EL or U/CQ neurons were placed in an eve-null background, eve expression was completely eliminated in the corresponding neurons, without affecting other aspects of eve expression. Many of these transgenic flies were able to survive to fertile adulthood. In the RP2+a/pCC mutant flies: (1) both RP2 and aCC showed abnormal axonal projection patterns, failing to innervate their normal target muscles; (2) the cell bodies of these neurons were positioned abnormally; and (3) in contrast to the wild type, pCC axons often crossed the midline. The Eve HD alone was able to provide a weak, partial rescue of the mutant phenotype, while both the Groucho-dependent and -independent repressor domains contributed equally to full rescue of each aspect of the mutant phenotype. Complete rescue was also obtained with a chimeric protein containing the Eve HD and the Engrailed repressor domain. Consistent with the apparent sufficiency of repressor function, a fusion protein between the Gal4 DNA-binding domain and Eve repressor domains was capable of actively repressing UAS target genes in these neurons. A key target of the repressor function of Eve was Drosophila Hb9, the derepression of which correlated with the mutant phenotype in individual eve-mutant neurons. Finally, homologues of Eve from diverse species were able to rescue the eve mutant phenotype, indicating conservation of both targeting and repression functions in the nervous system.  相似文献   

18.
19.
Pax group III genes and the evolution of insect pair-rule patterning   总被引:4,自引:0,他引:4  
Pair-rule genes were identified and named for their role in segmentation in embryos of the long germ insect Drosophila. Among short germ insects these genes exhibit variable expression patterns during segmentation and thus are likely to play divergent roles in this process. Understanding the details of this variation should shed light on the evolution of the genetic hierarchy responsible for segmentation in Drosophila and other insects. We have investigated the expression of homologs of the Drosophila Pax group III genes paired, gooseberry and gooseberry-neuro in short germ flour beetles and grasshoppers. During Drosophila embryogenesis, paired acts as one of several pair-rule genes that define the boundaries of future parasegments and segments, via the regulation of segment polarity genes such as gooseberry, which in turn regulates gooseberry-neuro, a gene expressed later in the developing nervous system. Using a crossreactive antibody, we show that the embryonic expression of Pax group III genes in both the flour beetle Tribolium and the grasshopper Schistocerca is remarkably similar to the pattern in Drosophila. We also show that two Pax group III genes, pairberry1 and pairberry2, are responsible for the observed protein pattern in grasshopper embryos. Both pairberry1 and pairberry2 are expressed in coincident stripes of a one-segment periodicity, in a manner reminiscent of Drosophila gooseberry and gooseberry-neuro. pairberry1, however, is also expressed in stripes of a two-segment periodicity before maturing into its segmental pattern. This early expression of pairberry1 is reminiscent of Drosophila paired and represents the first evidence for pair-rule patterning in short germ grasshoppers or any hemimetabolous insect.  相似文献   

20.
J P Vincent  P H O'Farrell 《Cell》1992,68(5):923-931
In Drosophila embryos, boundaries of lineage restriction separate groups of cells, or compartments. Engrailed is essential for specification of the posterior compartment of each segment, and its expression is thought to mark this compartment. Using a new photo-activatable lineage tracer, we followed the progeny of single embryonic cells marked at the blastoderm stage. No clones straddled the anterior edges of engrailed stripes (the parasegment border). However, posterior cells of each stripe lose engrailed expression, producing mixed clones. We suggest that stable expression of engrailed by cells at the anterior edge of the stripe reflects, not cell-intrinsic mechanisms, but proximity to cells that produce Wingless, an extracellular signal needed for maintenance of engrailed expression. If control of posterior cell fate parallels control of engrailed expression, cell fate is initially responsive to cell environment and cell fate determination is a later event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号