首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
During chlorophyll and bacteriochlorophyll biosynthesis in gymnosperms, algae, and photosynthetic bacteria, dark-operative protochlorophyllide oxidoreductase (DPOR) reduces ring D of aromatic protochlorophyllide stereospecifically to produce chlorophyllide. We describe the heterologous overproduction of DPOR subunits BchN, BchB, and BchL from Chlorobium tepidum in Escherichia coli allowing their purification to apparent homogeneity. The catalytic activity was found to be 3.15 nmol min(-1) mg(-1) with K(m) values of 6.1 microm for protochlorophyllide, 13.5 microm for ATP, and 52.7 microm for the reductant dithionite. To identify residues important in DPOR function, 21 enzyme variants were generated by site-directed mutagenesis and investigated for their metal content, spectroscopic features, and catalytic activity. Two cysteine residues (Cys(97) and Cys(131)) of homodimeric BchL(2) are found to coordinate an intersubunit [4Fe-4S] cluster, essential for low potential electron transfer to (BchNB)(2) as part of the reduction of the protochlorophyllide substrate. Similarly, Lys(10) and Leu(126) are crucial to ATP-driven electron transfer from BchL(2). The activation energy of DPOR electron transfer is 22.2 kJ mol(-1) indicating a requirement for 4 ATP per catalytic cycle. At the amino acid level, BchL is 33% identical to the nitrogenase subunit NifH allowing a first tentative structural model to be proposed. In (BchNB)(2), we find that four cysteine residues, three from BchN (Cys(21), Cys(46), and Cys(103)) and one from BchB (Cys(94)), coordinate a second inter-subunit [4Fe-4S] cluster required for catalysis. No evidence for any type of molybdenum-containing cofactor was found, indicating that the DPOR subunit BchN clearly differs from the homologous nitrogenase subunit NifD. Based on the available data we propose an enzymatic mechanism of DPOR.  相似文献   

2.
The photosynthetic bacteria Rhodobacter capsulatus and Rhodospirillum rubrum regulate their nitrogenase activity by the reversible ADP-ribosylation of nitrogenase Fe-protein in response to ammonium addition or darkness. This regulation is mediated by two enzymes, dinitrogenase reductase ADP-ribosyl transferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG). Recently, we demonstrated that another photosynthetic bacterium, Rhodobacter sphaeroides, appears to have no draTG genes, and no evidence of Fe-protein ADP-ribosylation was found in this bacterium under a variety of growth and incubation conditions. Here we show that four different strains of Rba. sphaeroides are incapable of modifying Fe-protein, whereas four out of five Rba. capsulatus strains possess this ability. Introduction of Rba. capsulatus draTG and nifHDK (structural genes for nitrogenase proteins) into Rba. sphaeroides had no effect on in vivo nitrogenase activity and on nitrogenase switch-off by ammonium. However, transfer of draTG from Rba. capsulatus was sufficient to confer on Rba. sphaeroides the ability to reversibly modify the nitrogenase Fe-protein in response to either ammonium addition or darkness. These data suggest that Rba. sphaeroides, which lacks DRAT and DRAG, possesses all the elements necessary for the transduction of signals generated by ammonium or darkness to these proteins.  相似文献   

3.
Jiro Nomata  Carl E. Bauer 《BBA》2005,1708(2):229-237
Dark-operative protochlorophyllide oxidoreductase (DPOR) plays a crucial role in light-independent (bacterio)chlorophyll biosynthesis in most photosynthetic organisms. However, the biochemical properties of DPOR are still largely undefined. Here, we constructed an overexpression system of two separable components of DPOR, L-protein (BchL) and NB-protein (BchN-BchB), in the broad-host-range vector pJRD215 in Rhodobacter capsulatus. We established a stable DPOR assay system by mixing crude extracts from the two transconjugants under anaerobic conditions. Using this assay system, we demonstrated some basic properties of DPOR. The Km value for protochlorophyllide was 10.6 μM. Ferredoxin functioned as an electron donor to DPOR. Elution profiles in gel filtration chromatography indicated that L-protein and NB-protein are a homodimer [(BchL)2] and a heterotetramer [(BchN)2(BchB)2], respectively. These results provide a framework for the characterization of these components in detail, and further support a nitrogenase model of DPOR.  相似文献   

4.
We present the nucleotide and deduced amino acid sequences of four contiguous bacteriochlorophyll synthesis genes from Rhodobacter capsulatus. Three of these genes code for enzymes which catalyze reactions common to the chlorophyll synthesis pathway and therefore are likely to be found in plants and cyanobacteria as well. The pigments accumulated in strains with physically mapped transposon insertion mutations are analyzed by absorbance and fluorescence spectroscopy, allowing us to assign the genes as bchF, bchN, bchB, and bchH, in that order. bchF encodes a bacteriochlorophyll alpha-specific enzyme that adds water across the 2-vinyl group. The other three genes are required for portions of the pathway that are shared with chlorophyll synthesis, and they were expected to be common to both pathways. bchN and bchB are required for protochlorophyllide reduction in the dark (along with bchL), a reaction that has been observed in all major groups of photosynthetic organisms except angiosperms, where only the light-dependent reaction has been clearly established. The purple bacterial and plant enzymes show 35% identity between the amino acids coded by bchN and chlN (gidA) and 49% identity between the amino acids coded by bchL and chlL (frxC). Furthermore, bchB is 33% identical to ORF513 from the Marchantia polymorpha chloroplast. We present arguments in favor of the probable role of ORF513 (chlB) in protochlorophyllide reduction in the dark. The further similarities of all three subunits of protochlorophyllide reductase and the three subunits of chlorin reductase in bacteriochlorophyll synthesis suggest that the two reductase systems are derived from a common ancestor.  相似文献   

5.
The bchA locus of Rhodobacter capsulatus codes for the chlorin reductase enzyme in the bacteriochlorophyll synthesis pathway. Previous work has suggested that this locus might encompass a single gene. We have sequenced the bchA locus and found it to contain three coding segments, which we designate bchX, bchY, and bchZ. Each coding segment contains its own translational initiation sequence and follows codon utilization patterns consistent with those of previously published R. capsulatus genes. When various regions of the bchA locus and flanking sequences were subcloned into an expression vector and expressed in Escherichia coli, the three coding segments were all expressed as separate peptides. Finally, conservation of amino acid sequences between bchX and a subunit of the protochlorophyllide reductase (bchL, 34% identity) and the nitrogenase Fe protein (nifH, 30 to 37% identity) suggests structural and mechanistic commonalities among all three proteins.  相似文献   

6.
High-quality NMR structures of the C-terminal domain comprising residues 484–537 of the 537-residue protein Bacterial chlorophyll subunit B (BchB) from Chlorobium tepidum and residues 9–61 of 61-residue Asr4154 from Nostoc sp. (strain PCC 7120) exhibit a mixed α/β fold comprised of three α-helices and a small β-sheet packed against second α-helix. These two proteins share 29 % sequence similarity and their structures are globally quite similar. The structures of BchB(484–537) and Asr4154(9–61) are the first representative structures for the large protein family (Pfam) PF08369, a family of unknown function currently containing 610 members in bacteria and eukaryotes. Furthermore, BchB(484–537) complements the structural coverage of the dark-operating protochlorophyllide oxidoreductase.  相似文献   

7.
In most photosynthetic organisms, the chlorin ring structure of chlorophyll a is formed by the reduction of the porphyrin D-ring by the dark-operative nitrogenase-like enzyme, protochlorophyllide reductase (DPOR). Subsequently, the chlorin B-ring is reduced in bacteriochlorophyll biosynthesis to form a bacteriochlorin ring structure. Phenotypic analysis of mutants lacking one of three genes, bchX, bchY, or bchZ, which show significant sequence similarity to the structural genes of nitrogenase, suggests that a second nitrogenase-like enzyme is involved in the chlorin B-ring reduction. However, there is no biochemical evidence for this. Here, we report the reconstitution of chlorophyllide a reductase (COR) with purified proteins. Two Rhodobacter capsulatus strains that overexpressed Strep-tagged BchX and BchY were isolated. Strep-tagged BchX was purified as a single polypeptide, and BchZ was co-purified with Strep-tagged BchY. When BchX and BchY-BchZ components were incubated with chlorophyllide a, ATP, and dithionite under anaerobic conditions, chlorophyllide a was converted to a new pigment with a Qy band of longer wavelength at 734 nm (P734) in 80% acetone. The formation of P734 was dependent on ATP and dithionite. High performance liquid chromatography and mass spectroscopic analysis indicated that P734 is 3-vinyl bacteriochlorophyllide a, which is formed by the B-ring reduction of chlorophyllide a. These results demonstrate that the B-ring of chlorin is reduced by a second nitrogenase-like enzyme and that the sequential actions of two nitrogenase-like enzymes, DPOR and COR, convert porphyrin to bacteriochlorin. The evolutionary implications of nitrogenase-like enzymes to determine the ring structure of (bacterio)chlorophyll pigments are discussed.  相似文献   

8.
Nomata J  Kitashima M  Inoue K  Fujita Y 《FEBS letters》2006,580(26):6151-6154
Dark-operative protochlorophyllide reductase (DPOR) in bacteriochlorophyll biosynthesis is a nitrogenase-like enzyme consisting of L-protein (BchL-dimer) as a reductase component and NB-protein (BchN-BchB-heterotetramer) as a catalytic component. Metallocenters of DPOR have not been identified. Here we report that L-protein has an oxygen-sensitive [4Fe-4S] cluster similar to nitrogenase Fe protein. Purified L-protein from Rhodobacter capsulatus showed absorption spectra and an electron paramagnetic resonance signal indicative of a [4Fe-4S] cluster. The activity quickly disappeared upon exposure to air with a half-life of 20s. These results suggest that the electron transfer mechanism is conserved in nitrogenase Fe protein and DPOR L-protein.  相似文献   

9.
Using genomic analysis, researchers previously identified genes coding for proteins homologous to the structural proteins of nitrogenase (J. Raymond, J. L. Siefert, C. R. Staples, and R. E. Blankenship, Mol. Biol. Evol. 21:541-554, 2004). The expression and association of NifD and NifH nitrogenase homologs (named NflD and NflH for "Nif-like" D and H, respectively) have been detected in a non-nitrogen-fixing hyperthermophilic methanogen, Methanocaldococcus jannaschii. These homologs are expressed constitutively and do not appear to be directly involved with nitrogen metabolism or detoxification of compounds such as cyanide or azide. The NflH and NflD proteins were found to interact with each other, as determined by bacterial two-hybrid studies. Upon immunoisolation, NflD and NflH copurified, along with three other proteins whose functions are as yet uncharacterized. The apparent presence of genes coding for NflH and NflD in all known methanogens, their constitutive expression, and their high sequence similarity to the NifH and NifD proteins or the BchL and BchN/BchB proteins suggest that NflH and NflD participate in an indispensable and fundamental function(s) in methanogens.  相似文献   

10.
Abstract: Light‐dependent NADPH‐protochlorophyllide oxidoreductase (LPOR) is a nuclear‐encoded chloroplast protein in green algae and higher plants which catalyzes the light‐dependent reduction of protochlorophyllide to chlorophyllide. Light‐dependent chlorophyll biosynthesis occurs in all oxygenic photosynthetic organisms. With the exception of angiosperms, this pathway coexists with a separate light‐independent chlorophyll biosynthetic pathway, which is catalyzed by light‐independent protochlorophyllide reductase (DPOR) in the dark. In contrast, the light‐dependent function of chlorophyll biosynthesis is absent from anoxygenic photosynthetic bacteria. Consequently, the question is whether cyanobacteria are the ancestors of all organisms that conduct light‐dependent chlorophyll biosynthesis. If so, how did photosynthetic eukaryotes acquire the homologous genes of LPOR in their nuclear genomes? The large number of complete genome sequences now available allow us to detect the evolutionary history of LPOR genes by conducting a genome‐wide sequence comparison and phylogenetic analysis. Here, we show the results of a detailed phylogenetic analysis of LPOR and other functionally related enzymes in the short chain dehydrogenase/reductase (SDR) family. We propose that the LPOR gene originated in the cyanobacterial genome before the divergence of eukaryotic photosynthetic organisms. We postulated that the photosynthetic eukaryotes obtained their LPOR homologues through endosymbiotic gene transfer.  相似文献   

11.
The biosynthetic chain leading from 5-aminolevulinic acid to chlorophyll is localised to the plastid. Many of the enzymes are nuclear-encoded. NADPH-protochlorophyllide oxidoreductase (EC 1.3.1.33) is one such enzyme which is encoded by two different genes and can exist in an A and a B form. Its import into the plastid seems to be facilitated when protochlorophyllide is present in the chloroplast envelope. Within the plastid the reductase is assembled to thylakoids or prolamellar bodies. The specific properties of the reductase together with the specific properties of the lipids present in the etioplast inner membranes promote the formation of the three-dimensional regular network of the prolamellar bodies. The reductase forms a ternary complex with protochlorophyllide and NADPH that gives rise to different spectral forms of protochlorophyllide. Light transforms protochlorophyllide into chlorophyllide and this photoreaction induces a conformational change in the reductase protein which leads to a process of disaggregation of enzyme, pigment aggregates and membranes, which can be followed spectroscopically and with electron microscopy. The newly formed chlorophyllide is esterified by a membrane-bound nuclear-encoded chlorophyll synthase and the chlorophyll molecule is then associated with proteins into active pigment protein complexes in the photosynthetic machinery.  相似文献   

12.
Ginkgo biloba L. is a large tree native in China with evolutionary affinities to the conifers and cycads. However unlike conifers, the gymnosperm G. biloba is not able to synthesize chlorophyll (Chl) in the dark, in spite of the presence of genes encoding subunits of light-independent protochlorophyllide oxidoreductase (DPOR) in the plastid genome. The principal aims of the present study were to investigate the presence of DPOR protein subunits (ChlL, ChlN, ChlB) as well as the key regulatory step in Chl formation: aminolevulinic acid (ALA) synthesis and abundance of the key regulatory enzyme in its synthesis: glutamyl-tRNA reductase (GluTR). In addition, functional stage of photosynthetic apparatus and assembly of pigment-protein complexes were investigated. Dark-grown, illuminated and circadian-grown G. biloba seedlings were used in our experiments. Our results clearly showed that no protein subunits of DPOR were detected irrespective of light conditions, what is consistent with the absence of Chl and Chl-binding proteins (D1, LHCI, LHCIIb) in the dark. This correlates with low ALA-synthesizing capacity and low amount of GluTR. The concentration of protochlorophyllide (Pchlide) in the dark is low and non-photoactive form (Pchlide633) was predominant. Plastids were developed as typical etioplasts with prollamelar body and few prothylakoid membranes. Continual illumination (24 h) only slightly stimulated ALA and Chl synthesis, although Pchlide content was reduced. Prollamelar bodies disappeared, but no grana were formed, what was consistent with the absence of D1, LHCI, LHCIIb proteins. Lightinduced development of photosynthetic apparatus is extremely slow, as indicated by Chl fluorescence and gas exchange measurements. Even after 72 h of continuous illumination, the values of maximum (Fv/Fm) and effective quantum yield (ΦPSII) and rate of net photosynthesis (P N) did not reach the values comparable with circadian-grown plants.  相似文献   

13.
Dark-operative protochlorophyllide oxidoreductase (DPOR) is a nitrogenase-like enzyme catalyzing D-ring reduction of protochlorophyllide in chlorophyll and bacteriochlorophyll biosynthesis. DPOR consists of two components, L-protein and NB-protein, which are structurally related to nitrogenase Fe-protein and MoFe-protein, respectively. Neither Fe-protein nor MoFe-protein is expressed as an active form in Escherichia coli due to the requirement of many Nif proteins for the assembly of the metallocenter and the maturation specific for diazotrophs. Here we report the functional expression of DPOR components from Rhodobacter capsulatus in Escherichia coli. Two overexpression plasmids for L-protein and NB-protein were constructed. L-protein and NB-protein purified from E. coli showed spectroscopic properties similar to those purified from R. capsulatus. L-protein and NB-protein activities were evaluated using a crude extract of E. coli overexpressing NB-protein and L-protein, respectively. Specific activities of the purified L-protein and NB-protein were 219+/-38 and 52.8+/-5.5 nmolChlorophyllide min(-1) mg(-1), respectively, which were even higher than those of L-protein and NB-protein purified from R. capsulatus. These E. coli strains provide a promising system for structural and kinetic analyses of the nitrogenase-like enzymes.  相似文献   

14.
Chlorophyll is synthesized from activated glutamate in the tetrapyrrole biosynthesis pathway through at least 20 different enzymatic reactions. Among these, the MgProto monomethylester (MgProtoME) cyclase catalyzes the formation of a fifth isocyclic ring to tetrapyrroles to form protochlorophyllide. The enzyme consists of two proteins. The CHL27 protein is proposed to be the catalytic component, while LCAA/YCF54 likely acts as a scaffolding factor. In comparison to other reactions of chlorophyll biosynthesis, this enzymatic step lacks clear elucidation and it is hardly understood, how electrons are delivered for the NADPH‐dependent cyclization reaction. The present study intends to elucidate more precisely the role of LCAA/YCF54. Transgenic Arabidopsis lines with inactivated and overexpressed YCF54 reveal the mutual stability of YCF54 and CHL27. Among the YCF54‐interacting proteins, the plastidal ferredoxin‐NADPH reductase (FNR) was identified. We showed in N. tabacum and A. thaliana that a deficit of FNR1 or YCF54 caused MgProtoME accumulation, the substrate of the cyclase, and destabilization of the cyclase subunits. It is proposed that FNR serves as a potential donor for electrons required in the cyclase reaction and connects chlorophyll synthesis with photosynthetic activity.  相似文献   

15.
Mg-chelatase catalyzes the insertion of Mg2+ into protoporphyrin IX at the first committed step of the chlorophyll biosynthetic pathway. It consists of three subunits: I, D, and H. The I subunit belongs to the AAA protein superfamily (ATPases associated with various cellular activities) that is known to form hexameric ring structures in an ATP-dependant fashion. Dominant mutations in the I subunit revealed that it functions in a cooperative manner. We demonstrated that the D subunit forms ATP-independent oligomeric structures and should also be classified as an AAA protein. Furthermore, we addressed the question of cooperativity of the D subunit with barley (Hordeum vulgare) mutant analyses. The recessive behavior in vivo was explained by the absence of mutant proteins in the barley cell. Analogous mutations in Rhodobacter capsulatus and the resulting D proteins were studied in vitro. Mixtures of wild-type and mutant R. capsulatus D subunits showed a lower activity compared with wild-type subunits alone. Thus, the mutant D subunits displayed dominant behavior in vitro, revealing cooperativity between the D subunits in the oligomeric state. We propose a model where the D oligomer forms a platform for the stepwise assembly of the I subunits. The cooperative behavior suggests that the D oligomer takes an active part in the conformational dynamics between the subunits of the enzyme.  相似文献   

16.
Chlorophyll biosynthesis is catalyzed by two multi subunit enzymes; a light-dependent and a light-independent protochlorophyllide oxidoreductase. The light-independent enzyme consists of three subunits (ChlL, ChlN and ChlB) in photosynthetic bacteria and plastids in which the chlB gene encodes the major subunit that catalyzes the reduction of protochlorophyllide to chlorophyllide. We report here stable integration of the chlB gene from Pinus thunbergii into the chloroplast genome of tobacco. Using helium-driven biolistic gun, transplastomic clones were developed in vitro. The stable integration and homoplasmy for transgenes was confirmed by using PCR and Southern blotting techniques. Nodal cuttings of the homoplasmic transgenic and untransformed wild type shoots were cultured on MS medium in the dark. As expected, shoots developed from the cuttings of the wild type plants in the dark showed etiolated growth with no roots whereas shoots from the cuttings of the transgenic plants developed early and more roots. Upon shifting from dark to light in growth room, leaves of the transgenic shoots showed early development of chlorophyll pigments compared to the wild type shoots. Further, photosynthetically indistinguishable transgenic shoots also showed significant difference in root development from untransformed wild type shoots when cuttings were grown in the light. Therefore, it may be concluded that the chlB gene is involved, directly or indirectly, in the root development of tobacco. Further, the gene promotes early development of chlorophyll pigments, upon illumination from dark, in addition to its role in the light-independent chlorophyll formation when expressed together with subunits L&N in other organisms.  相似文献   

17.
18.
thiK and thiL loci of Escherichia coli.   总被引:4,自引:4,他引:0       下载免费PDF全文
Nitrogenase proteins were isolated from cultures of the photosynthetic bacterium Rhodopseudomonas capsulata grown on a limiting amount of ammonia. Under these conditions, the nitrogenase N2ase A was active in vivo, and nitrogenase activity in vitro was not dependent upon manganese and the activating factor. The nitrogenase proteins were also isolated from nitrogen-limited cultures in which the in vivo nitrogenase activity had been stopped by an ammonia shock. This nitrogenase activity, N2ase R, showed an in vitro requirement for manganese and the activating factor for maximal activity. The Mo-Fe protein (dinitrogenase) was composed of two dissimilar subunits with molecular weights of 55,000 and 59,500; the Fe protein (dinitrogenase reductase), from either type of culture, was composed of a single subunit (molecular weight), 33,500). The metal and acid labile sulfur contents of both nitrogenase proteins were similar to those found for previously isolated nitrogenases. The Fe proteins from both N2ase A and N2ase R contained phosphate and ribose, 2 mol of each per mol of N2ase R Fe protein and about 1 mol of each per mol of N2ase A Fe protein. The greatest difference between the two types of Fe protein was that the N2ase R Fe protein contained about 1 mol per mol of an adenine-like molecule, whereas the N2ase A Fe protein content of this compound was insignificant. These results are compared with various models previously presented for the short-term regulation of nitrogenase activity in the photosynthetic bacteria.  相似文献   

19.
Light-independent chlorophyll (Chl) biosynthesis is a prerequisite for the assembly of photosynthetic pigment–protein complexes in the dark. Dark-grown Larix decidua Mill. seedlings synthesize Chl only in the early developmental stages and their Chl level rapidly declines during the subsequent development. Our analysis of the key regulatory steps in Chl biosynthesis revealed that etiolation of initially green dark-grown larch cotyledons is connected with decreasing content of glutamyl-tRNA reductase and reduced 5-aminolevulinic acid synthesizing capacity. The level of the Chl precursor protochlorophyllide also declined in the developing larch cotyledons. Although the genes chlL, chlN and chlB encoding subunits of the light-independent protochlorophyllide oxidoreductase were constitutively expressed in the larch seedlings, the accumulation of the ChlB subunit was developmentally regulated and ChlB content decreased in the fully developed cotyledons. The efficiency of chlB RNA-editing was also reduced in the mature dark-grown larch seedlings. In contrast to larch, dark-grown seedlings of Picea abies (L.) Karst. accumulate Chl throughout their whole development and show a different control of ChlB expression. Analysis of the plastid ultrastructure, photosynthetic proteins by Western blotting and photosynthetic parameters by gas exchange and Chl fluorescence measurements provide additional experimental proofs for differences between dark and light Chl biosynthesis in spruce and larch seedlings.  相似文献   

20.
Chlorophyll and bacteriochlorophyll biosynthesis requires the two-electron reduction of protochlorophyllide a ringDbya protochlorophyllide oxidoreductase to form chlorophyllide a. A light-dependent (light-dependent Pchlide oxidoreductase (LPOR)) and an unrelated dark operative enzyme (dark operative Pchlide oxidoreductase (DPOR)) are known. DPOR plays an important role in chlorophyll biosynthesis of gymnosperms, mosses, ferns, algae, and photosynthetic bacteria in the absence of light. Although DPOR shares significant amino acid sequence homologies with nitrogenase, only the initial catalytic steps resemble nitrogenase catalysis. Substrate coordination and subsequent [Fe-S] cluster-dependent catalysis were proposed to be unrelated. Here we characterized the first cyanobacterial DPOR consisting of the homodimeric protein complex ChlL(2) and a heterotetrameric protein complex (ChlNB)(2). The ChlL(2) dimer contains one EPR active [4Fe-4S] cluster, whereas the (ChlNB)(2) complex exhibited EPR signals for two [4Fe-4S] clusters with differences in their g values and temperature-dependent relaxation behavior. These findings indicate variations in the geometry of the individual [4Fe-4S] clusters found in (ChlNB)(2). For the analysis of DPOR substrate recognition, 11 synthetic derivatives with altered substituents on the four pyrrole rings and the isocyclic ring plus eight chlorophyll biosynthetic intermediates were tested as DPOR substrates. Although DPOR tolerated minor modifications of the ring substituents on rings A-C, the catalytic target ring D was apparently found to be coordinated with high specificity. Furthermore, protochlorophyllide a, the corresponding [8-vinyl]-derivative and protochlorophyllide b were equally utilized as substrates. Distinct differences from substrate binding by LPOR were observed. Alternative biosynthetic routes for cyanobacterial chlorophyll biosynthesis with regard to the reduction of the C8-vinyl group and the interconversion of a chlorophyll a/b type C7 methyl/formyl group were deduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号