首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salmonella has developed ways to modulate host cellular response in order to survive. Although the steps required for such modulation have been incompletely characterized, there is increasing evidence for a role for SptP, a type III secretion protein. In part, the actions of SptP are thought to be mediated through its reported inhibition of the extracellular-regulated kinase (ERK) MAP kinase pathway. In the present studies, a series of transfections were performed in which various constitutively activated components of the MAP kinase pathway were co-transfected with SptP in order to determine the mechanism by which SptP inhibits this MAP kinase activation. SptP was found to inhibit the activation of ERK stimulated by both a constitutively active form of Ras and a partially activated form of Raf-1 containing a phospho-mimetic mutation (Raf Y340D). In contrast, the activation of ERK by constitutively active forms of MAP kinase kinase (MEK) was not inhibited, suggesting that the actions of SptP were mediated by Raf-1. In order to determine how SptP might interfere with activation of Raf, we utilized a membrane-localized form of Raf. Constitutive membrane-localization of Raf (RafCAAX), resulting in partial activation, did not prevent inhibition by SptP. However, introduction of an additional, partially activating (Y340D) phospho-mimetic mutation, to RafCAAX, dramatically reduced the ability of SptP to inhibit Raf action. Comparison of SptP mutants, lacking either GTPase-activating protein (GAP) activity or tyrosine phosphatase activity, further suggested that SptP inhibits both the membrane localization and subsequent phosphorylation required for activation of Raf. Both tyrosine phosphatase activity and GAP activity were responsible for SptP inhibition of Raf(Y340D)-induced ERK activation, but only GAP activity was responsible for inhibition of the membrane localized forms of Raf-1. To assess the biological significance of SptP, we examined tumour necrosis factor (TNF)-alpha induction following Salmonella infection. SptP gene deletion enhanced the capacity of Salmonella to induce TNF-alpha secretion following infection of J774A.1 macrophage cells.  相似文献   

2.
Ras plays a key role in regulating cellular proliferation, differentiation, and transformation. Raf is the major effector of Ras in the Ras > Raf > Mek > extracellular signal-activated kinase (ERK) cascade. A second effector is phosphoinositide 3-OH kinase (PI 3-kinase), which, in turn, activates the small G protein Rac. Rac also has multiple effectors, one of which is the serine threonine kinase Pak (p65(Pak)). Here we show that Ras, but not Raf, activates Pak1 in cotransfection assays of Rat-1 cells but not NIH 3T3 cells. We tested agents that activate or block specific components downstream of Ras and demonstrate a Ras > PI 3-kinase > Rac/Cdc42 > Pak signal. Although these studies suggest that the signal from Ras through PI 3-kinase is sufficient to activate Pak, additional studies suggested that other effectors contribute to Pak activation. RasV12S35 and RasV12G37, two effector mutant proteins which fail to activate PI 3-kinase, did not activate Pak when tested alone but activated Pak when they were cotransfected. Similarly, RacV12H40, an effector mutant that does not bind Pak, and Rho both cooperated with Raf to activate Pak. A dominant negative Rho mutant also inhibited Ras activation of Pak. All combinations of Rac/Raf and Ras/Raf and Rho/Raf effector mutants that transform cells cooperatively stimulated ERK. Cooperation was Pak dependent, since all combinations were inhibited by kinase-deficient Pak mutants in both transformation assays and ERK activation assays. These data suggest that other Ras effectors can collaborate with PI 3-kinase and with each other to activate Pak. Furthermore, the strong correlation between Pak activation and cooperative transformation suggests that Pak activation is necessary, although not sufficient, for cooperative transformation of Rat-1 fibroblasts by Ras, Rac, and Rho.  相似文献   

3.
Ras plays an important role in a variety of cellular functions, including growth, differentiation, and oncogenic transformation. For instance, Ras participates in the activation of Raf, which phosphorylates and activates mitogen-activated protein kinase kinase (MEK), which then phosphorylates and activates extracellular signal-regulated kinase (ERK), a mitogen-activated protein (MAP) kinase. Activation of MAP kinase appears to be essential for propagating a wide variety of extracellular signals from the plasma membrane to the nucleus. N17Ras, a GDP-bound dominant negative mutant, is used widely as an interfering mutant to assess Ras function in vivo. Surprisingly, we observed that expression of N17Ras inhibited the activity and phosphorylation of Elk-1, a physiological substrate of MAP kinases, in response to phorbol myristate acetate. The activity and phosphorylation of the MAP kinase hemagglutinin epitope (HA)-ERK1 were not affected by N17Ras in response to the same stimulus. Additionally, expression of N17Ras, but not L61S186Ras, a GTP-bound interfering mutant, inhibited MEK-induced Elk-1 phosphorylation, suggesting that inhibition of Elk-1 may be unique to GDP-bound Ras mutants. Finally, we observed that V12Ras-induced focus formation in NIH3T3 cells is inhibited by coexpression of GDP-bound Ras mutants, such as N17, A15, and N17N69. Therefore, N17Ras and V12 Ras may be codominant with respect to Elk-1 activation and cellular transformation. These results indicate that N17Ras appears to have at least two distinguishable functions: interference with endogenous Ras activation and inhibition of Elk-1 and transfomation. Furthermore, our data imply the possibility that GDP-bound Ras, like N17Ras, may have a direct role in signal transduction.  相似文献   

4.
Among the mechanisms by which the Ras oncogene induces cellular transformation, Ras activates the mitogen-activated protein kinase (MAPK or ERK) cascade and a related cascade leading to activation of Jun kinase (JNK or SAPK). JNK is additionally regulated by the Ras-related G proteins Rac and Cdc42. Ras also regulates the actin cytoskeleton through an incompletely elucidated Rac-dependent mechanism. A candidate for the physiological effector for both JNK and actin regulation by Rac and Cdc42 is the serine/threonine kinase Pak (p65pak). We show here that expression of a catalytically inactive mutant Pak, Pak1(R299), inhibits Ras transformation of Rat-1 fibroblasts but not of NIH 3T3 cells. Typically, 90 to 95% fewer transformed colonies were observed in cotransfection assays with Rat-1 cells. Pak1(R299) did not inhibit transformation by the Raf oncogene, indicating that inhibition was specific for Ras. Furthermore, Rat-1 cell lines expressing Pak1(R299) were highly resistant to Ras transformation, while cells expressing wild-type Pak1 were efficiently transformed by Ras. Pak1(L83,L86,R299), a mutant that fails to bind either Rac or Cdc42, also inhibited Ras transformation. Rac and Ras activation of JNK was inhibited by Pak1(R299) but not by Pak1(L83,L86,R299). Ras activation of ERK was inhibited by both Pak1(R299) and Pak1(L83,L86,R299), while neither mutant inhibited Raf activation of ERK. These results suggest that Pak1 interacts with components essential for Ras transformation and that inhibition can be uncoupled from JNK but not ERK signaling.  相似文献   

5.
We have shown previously (Villalonga, P., López- Alcalá, C., Bosch, M., Chiloeches, A., Rocamora, N., Gil, J., Marais, R., Marshall, C. J., Bachs, O., and Agell, N. (2001) Mol. Cell. Biol. 21, 7345-7354) that calmodulin negatively regulates Ras activation in fibroblasts. Hence, anti-calmodulin drugs (such as W13, trifluoroperazine, or W7) are able to induce Ras/ERK pathway activation under low levels of growth factors. We show here that cell treatment with protein kinase C (PKC) inhibitors abolishes W13-induced activation of Ras, Raf-1, and ERK. Consequently, PKC activity is essential for achieving the synergism between calmodulin inhibition and growth factors to activate Ras. Furthermore, whereas the activation of PKC by 12-O-tetradecanoylphorbol-13-acetate (TPA) does not induce Ras activation in 3T3 cells, activation is observed if calmodulin is simultaneously inhibited. This indicates that calmodulin is preventing Ras activation by PKC. Treatment of cells with epidermal growth factor receptor or platelet-derived growth factor receptor tyrosine kinase inhibitors does not abrogate the activation of Ras by calmodulin inhibition. This implies that epidermal growth factor receptor and platelet-derived growth factor receptor tyrosine kinase activities are dispensable for the activation of Ras by TPA plus W13, and, therefore, Ras activation is not a consequence of the transactivation of those receptors by the combination of the anti-calmodulin drug plus TPA. Furthermore, K-Ras, the isoform previously shown to bind to calmodulin, is the only one activated by TPA when calmodulin is inhibited. These data suggest that direct interaction between K-Ras and calmodulin may account for the inability of PKC to activate Ras in 3T3 fibroblasts. In vitro experiments showed that the phosphorylation of K-Ras by PKC was inhibited by calmodulin, suggesting that calmodulin-dependent modulation of K-Ras phosphorylation by PKC could be the mechanism underlying K-Ras activation in fibroblasts treated with TPA plus W13.  相似文献   

6.
The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.  相似文献   

7.
Modulation of the Ras/Raf/MEK/ERK pathway by Ca(2+), and calmodulin   总被引:12,自引:0,他引:12  
Ras activation induces a variety of cellular responses that depend on the specific activated effector, the intensity and amplitude of its activation, and the cellular type. Transient activation followed by a sustained but low signal of the Ras/Raf/MEK/ERK pathway is a common feature of cell proliferation in many systems. On the contrary, sustained, high activation is linked with either senescence or apoptosis in fibroblasts and to differentiation in neurones and PC12 cells. The temporal regulation of the pathway is relevant and not only depends on the specific receptor activated but also on the presence of diverse modulators of the pathway. We review here evidence showing that calcium (Ca(2+)) and calmodulin (CaM) are able to regulate the Ras/Raf/MEK/ERK pathway. CaM-binding proteins (CaMBPs) as Ras-GRF and CaM-dependent protein kinase IV (CaMKIV) positively modulate ERK1/2 activation induced by either NGF or membrane depolarisation in neurones. In fibroblasts, CaM binding to EGF receptor and K-Ras(B) may be involved in the downregulation of the pathway after its activation, allowing a proliferative signalling.  相似文献   

8.
Cholecystokinin (CCK) and related peptides are potent growth factors in the gastrointestinal tract and may be important for human cancer. CCK exerts its growth modulatory effects through G(q)-coupled receptors (CCK(A) and CCK(B)) and activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2). In the present study, we investigated the different mechanisms participating in CCK-induced activation of ERK1/2 in pancreatic AR42J cells expressing both CCK(A) and CCK(B). CCK activated ERK1/2 and Raf-1 to a similar extent as epidermal growth factor (EGF). Inhibition of EGF receptor (EGFR) tyrosine kinase or expression of dominant-negative Ras reduced CCK-induced ERK1/2 activation, indicating participation of the EGFR and Ras in CCK-induced ERK1/2 activation. However, compared with EGF, CCK caused only small increases in tyrosine phosphorylation of the EGFR and Shc, Shc-Grb2 complex formation, and Ras activation. Signal amplification between Ras and Raf in a CCK-induced ERK cascade appears to be mediated by activation of protein kinase Cepsilon (PKCepsilon), because 1) down-modulation of phorbol ester-sensitive PKCs inhibited CCK-induced activation of Ras, Raf, and ERK1/2 without influencing Shc-Grb2 complex formation; 2) PKCepsilon, but not PKCalpha or PKCdelta, was detectable in Raf-1 immunoprecipitates, although CCK activated all three PKC isoenzymes. In addition, the present study provides evidence that the Src family tyrosine kinase Yes is activated by CCK and mediates CCK-induced tyrosine phosphorylation of Shc. Furthermore, we show that CCK-induced activation of the EGFR and Yes is achieved through the CCK(B) receptor. Together, our data show that different signals emanating from the CCK receptors mediate ERK1/2 activation; activation of Yes and the EGFR mediate Shc-Grb2 recruitment, and activation of PKC, most likely PKCepsilon, augments CCK-stimulated ERK1/2 activation at the Ras/Raf level.  相似文献   

9.
Situated downstream of Ras is a key signaling molecule, Raf1. Increase in Ca2+ concentration has been shown to modulate the Ras-dependent activation of Raf1; however, the mechanism underlying this effect remains elusive. Here, to characterize the role of Ca2+ in Ras signaling to Raf1, we used a synthetic guanine nucleotide exchange factor (GEF) for Ras, eGRF. In HeLa cells expressing eGRF, Ras was activated by the cAMP analogue 007 as efficiently as by epidermal growth factor (EGF), whereas the activation of Raf1, MEK, and ERK by 007 was about half of that by EGF. Using a biosensor based on fluorescence resonance energy transfer, it was found that activation of Raf1 at the plasma membrane required not only Ras activation but also an increase in Ca2+ concentration or inhibition of calmodulin. Furthermore, the Ca2+-dependent activation of Raf1 was found to be abrogated by knockdown of Shoc2, a scaffold protein that binds both Ras and Raf1. These observations indicated that the Shoc2 scaffold protein modulates Ras-dependent Raf1 activation in a Ca2+- and calmodulin-dependent manner.  相似文献   

10.
Activated Ras, but not Raf, causes transformation of RIE-1 epithelial cells, supporting the importance of Raf-independent pathways in mediating Ras transformation. The p38 and JNK mitogen-activated protein kinase cascades are activated by Ras via Raf-independent effector function. Therefore, we determined whether p38 and JNK activation are involved in Ras transformation of RIE-1 epithelial cells. Rather surprisingly, we found that pharmacologic inhibition of p38, together with Raf activation of ERK, was sufficient to mimic the morphologic and growth transformation caused by oncogenic Ras. p38 inhibition together with ERK activation also caused the same alterations in cyclin D1 and p21(CIP1) expression caused by Ras and induced an autocrine growth factor loop important for transformation. Finally, in contrast to p38, we found that JNK activation promoted Ras transformation, and that Ras deregulation of p38 and JNK was not mediated by activation of the Rac small GTPase. We conclude that a key action of Raf-independent effector pathways important for Ras transformation may involve inhibition of p38 and activation of JNK.  相似文献   

11.
While M-CSF-mediated MEK/ERK activation promotes osteoclast survival, the signaling pathway by which M-CSF activates MEK/ERK is unresolved. Functions for PI3K, Ras, and Raf have been implicated in support of osteoclast survival, although interaction between these signaling components has not been examined. Therefore, the interplay between PI3K, Ras and Raf in M-CSF-promoted MEK/ERK activation and osteoclast survival was investigated. M-CSF activates Ras to coordinate activation of PI3K and Raf/MEK/ERK, since Ras inhibition decreased PI3K activation and PI3K inhibition did not block M-CSF-mediated Ras activation. As further support for Ras-mediated signaling, constitutively active (ca) Ras promoted MEK/ERK activation and osteoclast survival, which was blocked by inhibition of PI3K or Raf. Moreover, PI3K-selective or Raf-selective caRas were only partially able to promote osteoclast survival when compared to parental caRas. We then examined whether PI3K and Raf function linearly or in parallel downstream of Ras. Expression of caPI3K increased MEK/ERK activation and promoted osteoclast survival downstream of M-CSF, supporting this hypothesis. Blocking Raf did not decrease osteoclast survival and MEK/ERK activation promoted by caPI3K. In addition, PI3K-selective Ras-mediated survival was not blocked by Raf inhibition. Taken together, our data support that Raf signaling is separate from Ras/PI3K signaling and PI3K signaling is separate from Ras/Raf signaling. These data therefore support a role for Ras in coordinate activation of PI3K and Raf acting in parallel to mediate MEK/ERK-promoted osteoclast survival induced by M-CSF.  相似文献   

12.
13.
In hematopoietic cells, Ras has been implicated in signaling pathways that prevent apoptosis triggered by deprivation of cytokines, such as interleukin-3 (IL-3). However, the mechanism whereby Ras suppresses cell death remains incompletely understood. We have investigated the role of Ras in IL-3 signal transduction by using the cytokine-dependent BaF3 cell line. Herein, we show that the activation of the pro-apoptotic protease caspase-3 upon IL-3 removal is suppressed by expression of activated Ras, which eventually prevents cell death. For caspase-3 suppression, the Raf/extracellular signal-regulated kinase (ERK)- or phosphatidylinositol 3-kinase (PI3-K)/Akt-mediated signaling pathway downstream of Ras was required. However, inhibition of both pathways did not block activated Ras-dependent suppression of cell death-associated phenotypes, such as nuclear DNA fragmentation. Thus, a pathway that is independent of both Raf/ERK and PI3-K/Akt pathways may function downstream of Ras, preventing activated caspase-3-initiated apoptotic processes. Conditional activation of c-Raf-1 also suppressed caspase-3 activation and subsequent cell death without affecting Akt activity, providing further evidence for a PI3-K/Akt-independent mechanism.  相似文献   

14.
We previously found that km23‐1/DYNLRB1 is required for transforming growth factor‐β (TGFβ) production through Ras/ERK pathways in TGFβ‐sensitive epithelial cells and in human colorectal cancer (CRC) cells. Here we demonstrate that km23‐1/DYNLRB1 is required for mitogen‐activated protein kinase kinase (MEK) activation in human CRC cells, detected by km23‐1/DYNLRB1‐siRNA inhibition of phospho‐(p)‐MEK immunostaining in RKO cells. Furthermore, we show that CRISPR‐Cas9 knock‐out (KO) of km23‐1/DYNLRB1 reduced cell migration in two additional CRC models, HCT116 and DLD‐1. Of interest, in contrast to our previous work showing that dynein motor activity was required for TGFβ‐mediated nuclear translocation of Smad2, in the current report, we demonstrate for the first time that disruption of dynein motor activity did not reduce TGFβ‐mediated activation of MEK1/2 or c‐Jun N‐terminal kinase (JNK). Moreover, size exclusion chromatography of RKO cell lysates revealed that B‐Raf, extracellular signal‐regulated kinase (ERK), and p‐ERK were not present in the large molecular weight fractions containing dynein holocomplex components. Furthermore, sucrose gradient fractionation of cell lysates from both HCT116 and CBS CRC cells demonstrated that km23‐1/DYNLRB1 co‐sedimented with Ras, p‐ERK, and ERK in fractions that did not contain components of holo‐dynein. Thus, km23‐1/DYNLRB1 may be associated with activated Ras/ERK signaling complexes in cell compartments that do not contain the dynein holoprotein complex, suggesting dynein‐independent km23‐1/DYNLRB1 functions in Ras/ERK signaling. Finally, of the Ras isoforms, R‐Ras is most often associated with cell migration, adhesion, and protrusive activity. Here, we show that a significant fraction of km23‐1/DYNLRB1 and RRas wase co‐localized at the protruding edges of migrating HCT116 cells, suggesting an important role for the km23‐1/DYNLRB1‐R‐Ras complex in CRC invasion.  相似文献   

15.
The Ras-MAPK signaling cascade transmits mitogenic stimuli from growth factor receptors and activated Ras to the cell nucleus. Inappropriate Ras activation is associated with approximately 30% of all human cancers. The kinase components of the Ras-MAPK signaling cascade are attractive targets for pharmaceutical intervention. Therefore, we have developed a high-throughput, nonradioactive ELISA method to monitor Raf and MEK1 kinase activity. In this assay system activated Raf phosphorylates and activates MEK1, which in turn phosphorylates MAPK. Antibodies that specifically detect phosphorylated MAPK (vs. nonphosphorylated MAPK) made enzyme-linked immunosorbent assay (ELISA) development possible. This assay detects inhibitors of Raf and/or MEK1 and has been used to screen large numbers of random compounds. The specific target of inhibition in the Raf/MEK1/MAPK ELISA can be subsequently identified by secondary assays which directly measure Raf phosphorylation of MEK1 or MEK1 phosphorylation of MAPK.  相似文献   

16.
Growth factor activation of MAP kinase requires cell adhesion.   总被引:24,自引:1,他引:23       下载免费PDF全文
M W Renshaw  X D Ren    M A Schwartz 《The EMBO journal》1997,16(18):5592-5599
The MAP kinase pathway is a major regulator of both normal and oncogenic growth. We report that activation of the MAP kinase ERK2 by serum or purified growth factors is strongly dependent on cell adhesion to extracellular matrix proteins. This effect is specific to soluble growth factors, since suspended cells still activate ERK2 in response to plating on fibronectin, and is reversible. Analysis of endogenous Ras and Raf show that these proteins are still activated by serum in suspended cells, whereas MEK activity is inhibited. Conversely, activation of ERK2 by activated mutants of Ras and Raf is still adhesion-dependent but activation by MEK is not. Consistent with these results, activated MEK enhances growth of ras-transformed cells in suspension but not when adherent. These results identify a novel synergism between cell adhesion- and growth factor-regulated pathways, and explain how oncogenic activation of MAP kinases induces both serum- and anchorage-independent growth.  相似文献   

17.
Adhesion to type 1 collagen can elicit different cellular responses dependent upon whether the collagen is in a fibrillar form (gel) or monomeric form (film). Hepatocytes adherent to collagen film spread extensively, express cyclin D1, and increase DNA synthesis in response to epidermal growth factor, whereas hepatocytes adherent to collagen gel have increased differentiated function, but lower DNA synthesis. The signaling mechanisms by which different forms of type I collagen modulate cell cycle progression are unknown. When ERK MAP kinase activation was analyzed in hepatocytes attached to collagen film, two peaks of ERK activity were demonstrated. Only the second peak, which correlated with an increase of cyclin D1, was required for G1-S progression. Notably, this second peak of ERK activity was absent in cells adherent to collagen gel, but not required in the presence of exogenous cyclin D1. Expression of activated mutants of the Ras/Raf/MEK signaling pathway in cells adherent to collagen gel restored ERK phosphorylation and DNA synthesis, but differentially affected cell shape. Although Ras, Raf, and MEK all increased expression of cyclin D1 on collagen film, only Ras and Raf significantly up-regulated cyclin D1 levels on collagen gel. These results demonstrate that adhesion to polymerized collagen induces growth arrest by inhibiting the Ras/ERK-signaling pathway to cyclin D1 required in late G1.  相似文献   

18.
19.
The serine/threonine kinase C-Raf is a key mediator in cellular signaling. Translocation of Raf to membranes has been proposed to be facilitated by Ras proteins in their GTP-bound state. In this study we provide evidence that both purified B- and C-Raf kinases possess lipophilic properties and associate with phospholipid membranes. In the presence of phosphatidylserine and lipid second messengers such as phosphatidic acid and ceramides these associations were very specific with affinity constants (K(D)) in the range of 0.5-50 nm. Raf association with liposomes was accompanied by displacement of 14-3-3 proteins and inhibition of Raf kinase activities. Interactions of Raf with cholesterol are of particular interest, since cholesterol has been shown to be involved, together with sphingomyelin and glycerophospholipids in the formation of specialized lipid microdomains called rafts. We demonstrate here that purified Raf proteins have moderate binding affinity for cholesterol. However, under conditions of lipid raft formation, Raf association with cholesterol (or rafts) increased dramatically. Since ceramides also support formation of rafts and interact with Raf we propose that Raf may be present at the plasma membrane in two distinct microdomains: in raft regions via association with cholesterol and ceramides and in non-raft regions due to interaction with phosphatidylserine and phosphatidic acid. At either location Raf kinase activity was inhibited by lipid binding in the absence or presence of Ras. Ras-Raf interactions with full-length C-Raf were studied both in solution and in phospholipid environment. Ras association with Raf was GTP dependent as previously demonstrated for C-Raf-RBD fragments. In the presence of liposomes the recruitment of C-Raf by reconstituted Ras-farnesyl was only marginal, since almost 70% of added C-Raf was bound by the lipids alone. Thus Ras-Raf binding in response to activation of Ras-coupled receptors may utilize Raf protein that is already present at the membrane.  相似文献   

20.
M-Ras is a Ras-related protein that shares approximately 55% identity with K-Ras and TC21. The M-Ras message was widely expressed but was most predominant in ovary and brain. Similarly to Ha-Ras, expression of mutationally activated M-Ras in NIH 3T3 mouse fibroblasts or C2 myoblasts resulted in cellular transformation or inhibition of differentiation, respectively. M-Ras only weakly activated extracellular signal-regulated kinase 2 (ERK2), but it cooperated with Raf, Rac, and Rho to induce transforming foci in NIH 3T3 cells, suggesting that M-Ras signaled via alternate pathways to these effectors. Although the mitogen-activated protein kinase/ERK kinase inhibitor, PD98059, blocked M-Ras-induced transformation, M-Ras was more effective than an activated mitogen-activated protein kinase/ERK kinase mutant at inducing focus formation. These data indicate that multiple pathways must contribute to M-Ras-induced transformation. M-Ras interacted poorly in a yeast two-hybrid assay with multiple Ras effectors, including c-Raf-1, A-Raf, B-Raf, phosphoinositol-3 kinase delta, RalGDS, and Rin1. Although M-Ras coimmunoprecipitated with AF6, a putative regulator of cell junction formation, overexpression of AF6 did not contribute to fibroblast transformation, suggesting the possibility of novel effector proteins. The M-Ras GTP/GDP cycle was sensitive to the Ras GEFs, Sos1, and GRF1 and to p120 Ras GAP. Together, these findings suggest that while M-Ras is regulated by similar upstream stimuli to Ha-Ras, novel targets may be responsible for its effects on cellular transformation and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号