首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The myogenic factors, MyoD, myogenin, Myf5 and MRF4, can activate skeletal muscle differentiation when overexpressed in non-muscular cells. Gene targeting experiments have provided much insight into the in vivo functions of MRF and have defined two functional groups of MRFs. MyoD and Myf5 may be necessary for myoblast determination while myogenin and MRF4 may be required later during differentiation. However, the specific role of these myogenic factors has not been clearly defined during one important stage of myogenesis: the fusion of myoblasts. Using cultured C2C12 mouse muscular cells, the time-course of these proteins was analyzed and a distinct expression pattern in fusing cells was revealed. In an attempt to clarify the role of each of these regulators during myoblast fusion, an antisense strategy using oligonucleotides with phosphorothioate backbone modification was adoped. The results showed that the inhibition of myogenin and Myf5 activity is capable of significantly preventing fusion. Furthermore, the inhibition of MyoD can wholly arrest the engaged fusion process in spite of high endogenous expression of both myogenin and Myf5. Consequently, each MRF seems to have, at this defined step of myogenesis, a specific set of functions that can not be substituted for by the others and therefore may regulate a distinct subset of muscle-specific genes at the onset of fusion.  相似文献   

3.
The present study evaluated endogenous activities and the role of BMP and transforming growth factor-β (TGF-β), representative members of the TGF-β family, during myotube differentiation in C2C12 cells. Smad phosphorylation at the C-terminal serines was monitored, since TGF-β family members signal via the phosphorylation of Smads in a ligand-dependent manner. Expression of phosphorylated Smad1/5/8, which is an indicator of BMP activity, was higher before differentiation, and rapidly decreased after differentiation stimulation. Differentiation-related changes were consistent with those in the expression of Ids, well-known BMP-responsive genes. Treatment with inhibitors of BMP type I receptors or noggin in C2C12 myoblasts down-regulated the expression of myogenic regulatory factors, such as Myf5 and MyoD, leading to impaired myotube formation. Addition of BMP-2 during the myoblast phase also inhibited myotube differentiation through the down-regulation of Myf5 and MyoD. In contrast to endogenous BMP activity, the phosphorylation of Smad2, a TGF-β-responsive Smad, was higher 8-16 days after differentiation stimulation. A-83-01, an inhibitor of TGF-β type I receptor, increased the expression of Myf5 and MyoD, and enhanced myotube formation. The present results reveal that endogenous activities of the TGF-β family are changed during myogenesis in a pathway-specific manner, and that the activities are required for myogenesis.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Wnt signaling and the activation of myogenesis in mammals   总被引:13,自引:0,他引:13       下载免费PDF全文
Cossu G  Borello U 《The EMBO journal》1999,18(24):6867-6872
  相似文献   

11.
12.
13.
14.
15.
Sonic hedgehog (Shh), produced by the notochord and floor plate, is proposed to function as an inductive and trophic signal that controls somite and neural tube patterning and differentiation. To investigate Shh functions during somite myogenesis in the mouse embryo, we have analyzed the expression of the myogenic determination genes, Myf5 and MyoD, and other regulatory genes in somites of Shh null embryos and in explants of presomitic mesoderm from wild-type and Myf5 null embryos. Our findings establish that Shh has an essential inductive function in the early activation of the myogenic determination genes, Myf5 and MyoD, in the epaxial somite cells that give rise to the progenitors of the deep back muscles. Shh is not required for the activation of Myf5 and MyoD at any of the other sites of myogenesis in the mouse embryo, including the hypaxial dermomyotomal cells that give rise to the abdominal and body wall muscles, or the myogenic progenitor cells that form the limb and head muscles. Shh also functions in somites to establish and maintain the medio-lateral boundaries of epaxial and hypaxial gene expression. Myf5, and not MyoD, is the target of Shh signaling in the epaxial dermomyotome, as MyoD activation by recombinant Shh protein in presomitic mesoderm explants is defective in Myf5 null embryos. In further support of the inductive function of Shh in epaxial myogenesis, we show that Shh is not essential for the survival or the proliferation of epaxial myogenic progenitors. However, Shh is required specifically for the survival of sclerotomal cells in the ventral somite as well as for the survival of ventral and dorsal neural tube cells. We conclude, therefore, that Shh has multiple functions in the somite, including inductive functions in the activation of Myf5, leading to the determination of epaxial dermomyotomal cells to myogenesis, as well as trophic functions in the maintenance of cell survival in the sclerotome and adjacent neural tube.  相似文献   

16.
Gene targeting has indicated that Myf5 and MyoD are required for myogenic determination because skeletal myoblasts and myofibers are missing in mouse embryos lacking both Myf5 and MyoD. To investigate the fate of Myf5:MyoD-deficient myogenic precursor cells during embryogenesis, we examined the sites of epaxial, hypaxial, and cephalic myogenesis at different developmental stages. In newborn mice, excessive amounts of adipose tissue were found in the place of muscles whose progenitor cells have undergone long-range migrations as mesenchymal cells. Analysis of the expression pattern of Myogenin-lacZ transgene and muscle proteins revealed that myogenic precursor cells were not able to acquire a myogenic fate in the trunk (myotome) nor at sites of MyoD induction in the limb buds. Importantly, the Myf5-dependent precursors, as defined by Myf5(nlacZ)-expression, deficient for both Myf5 and MyoD, were observed early in development to assume nonmuscle fates (e.g., cartilage) and, later in development, to extensively proliferate without cell death. Their fate appeared to significantly differ from the fate of MyoD-dependent precursors, as defined by 258/-2.5lacZ-expression (-20 kb enhancer of MyoD), of which a significant proportion failed to proliferate and underwent apoptosis. Taken together, these data strongly suggest that Myf5 and MyoD regulatory elements respond differentially in different compartments.  相似文献   

17.
Intrinsic signals regulate the initial steps of myogenesis in vertebrates   总被引:8,自引:0,他引:8  
In vertebrates, despite the evidence that extrinsic factors induce myogenesis in naive mesoderm, other experiments argue that the initiation of the myogenic program may take place independent of these factors. To resolve this discrepancy, we have re-addressed this issue, using short-term in vivo microsurgery and culture experiments in chick. Our results show that the initial expression of the muscle-specific markers Myf5 and MyoD is regulated in a mesoderm-autonomous fashion. The reception of a Wnt signal is required for MyoD, but not Myf5 expression; however, we show that the source of the Wnt signal is intrinsic to the mesoderm. Gain- and loss-of-function experiments indicate that Wnt5b, which is expressed in the presomitic mesoderm, represents the MyoD-activating cue. Despite Wnt5b expression in the presomitic mesoderm, MyoD is not expressed in this tissue: our experiments demonstrate that this is due to a Bmp inhibitory signal that prevents the premature expression of MyoD before somites form. Our results indicate that myogenesis is a multistep process which is initiated prior to somite formation in a mesoderm-autonomous fashion; as somites form, influences from adjacent tissues are likely to be required for maintenance and patterning of early muscles.  相似文献   

18.
Calpeptin inhibits myoblast fusion by inhibiting the activity of calpain. However, the mechanism by which calpeptin inhibits myogenesis is not completely understood. This study examined how calpeptin affects the expression of the myogenic regulatory factors (MRFs) and the phosphorylation of p38 mitogen-activated protein kinase (MAPK) in differentiating C2C12 myoblasts. Consistent with previous reports, calpeptin inhibited the induction of μ-calpain and the formation of myotubes in these cells. In particular, calpeptin inhibited the expression of the early and mid differentiation markers including MyoD, Myf5, myogenin, and MRF4 as well as the expression of the late markers such as troponin T and myosin heavy chain (MyHC). Calpeptin also suppressed the phosphorylation of p38 MAPK in C2C12 cells. SB203580, a specific p38 inhibitor, prevented the expression of the muscle-specific markers and their fusion into myotubes in these cells, which was further accelerated in the presence of calpeptin. These findings suggest that calpeptin inhibits the myogenesis of skeletal muscle cells by down-regulating the MRFs and involving p38 MAPK signaling.  相似文献   

19.
20.
Myostatin inhibits myoblast differentiation by down-regulating MyoD expression   总被引:38,自引:0,他引:38  
Myostatin, a negative regulator of myogenesis, is shown to function by controlling the proliferation of myoblasts. In this study we show that myostatin is an inhibitor of myoblast differentiation and that this inhibition is mediated through Smad 3. In vitro, increasing concentrations of recombinant mature myostatin reversibly blocked the myogenic differentiation of myoblasts, cultured in low serum media. Western and Northern blot analysis indicated that addition of myostatin to the low serum culture media repressed the levels of MyoD, Myf5, myogenin, and p21 leading to the inhibition of myogenic differentiation. The transient transfection of C(2)C(12) myoblasts with MyoD expressing constructs did not rescue myostatin-inhibited myogenic differentiation. Myostatin signaling specifically induced Smad 3 phosphorylation and increased Smad 3.MyoD association, suggesting that Smad 3 may mediate the myostatin signal by interfering with MyoD activity and expression. Consistent with this, the expression of dominant-negative Smad3 rescued the activity of a MyoD promoter-reporter in C(2)C(12) myoblasts treated with myostatin. Taken together, these results suggest that myostatin inhibits MyoD activity and expression via Smad 3 resulting in the failure of the myoblasts to differentiate into myotubes. Thus we propose that myostatin plays a critical role in myogenic differentiation and that the muscular hyperplasia and hypertrophy seen in animals that lack functional myostatin is because of deregulated proliferation and differentiation of myoblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号