首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article is part of a Special Issue “SBN 2014”.Maternal obesity, metabolic state, and diet during gestation have profound effects on offspring development. The prevalence of neurodevelopmental and mental health disorders has risen rapidly in the last several decades in parallel with the rise in obesity rates. Evidence from epidemiological studies indicates that maternal obesity and metabolic complications increase the risk of offspring developing behavioral disorders such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASD), and schizophrenia. Animal models show that a maternal diet high in fat similarly disrupts behavioral programming of offspring, with animals showing social impairments, increased anxiety and depressive behaviors, reduced cognitive development, and hyperactivity. Maternal obesity, metabolic conditions, and high fat diet consumption increase maternal leptin, insulin, glucose, triglycerides, and inflammatory cytokines. This leads to increased risk of placental dysfunction, and altered fetal neuroendocrine development. Changes in brain development that likely contribute to the increased risk of behavioral and mental health disorders include increased inflammation in the brain, as well as alterations in the serotonergic system, dopaminergic system and hypothalamic–pituitary–adrenal (HPA) axis.  相似文献   

2.
Direct viral infection of the developing brain can have disastrous consequences for the fetus. More subtle and perhaps more insidious are viral infections of the pregnant mother, which can have long-lasting effects such as an increased risk of schizophrenia in the offspring. A recent mouse model has shown that respiratory infection in the pregnant mother leads to marked behavioral and pharmacological abnormalities in the offspring, some of which are relevant for schizophrenia and autism. This effect on fetal brain development might be caused by the maternal antiviral immune response, possibly mediated by cytokines.  相似文献   

3.
Children born to older parents tend to have lower intelligence and are at higher risk for disorders such as schizophrenia and autism. Such observations of ageing damage being passed on from parents to offspring are not often considered within the evolutionary theory of ageing. Here, we show the 25% memory impairment in Drosophila melanogaster offspring solely dependent on the age of the parents and also passed on to the F2 generation. Furthermore, this parental age effect was not attributed to a generalized reduction in condition of the offspring but was specific to short‐term memory. We also provide evidence implicating oxidative stress as a causal factor by showing that lines selected for resistance to oxidative stress did not display a memory impairment in offspring of old parents. The identification of the parental age‐related memory impairment in a model system should stimulate integration between mechanistic studies of age‐related mortality risk and functional studies of parental age effects on the fitness of future generations.  相似文献   

4.
McAlonan GM  Li Q  Cheung C 《Neuro-Signals》2010,18(2):129-139
Autism is a highly heritable condition, but there is strong epidemiological evidence that environmental factors, especially prenatal exposure to immune challenge, contribute to it. This evidence is largely indirect, and experimental testing is necessary to directly examine causal mechanisms. Mouse models reveal that prenatal immune perturbation disrupts postnatal brain maturation with alterations in gene and protein expression, neurotransmitter function, brain structure and behavioral indices reminiscent of, but not specific to, autism. This likely reflects a neurodevelopmental spectrum in which autism and schizophrenia share numerous genetic and environmental risk factors for difficulties in social interaction, communication, emotion processing and executive function. Recent epidemiological studies find that early rather than late pregnancy infection confers the greater risk of schizophrenia. The autism literature is more limited, but exposures in the 2nd half of pregnancy may be important. Mouse models of prenatal immune challenge help dissect these observations and show some common consequences of early and late gestational exposures, as well as distinct ramifications potentially relevant to schizophrenia and autism. Although nonspecificity of immune-stimulated mouse models could be considered a disadvantage, we propose a broadened perspective, exploiting the possibility that advances made investigating a target condition can contribute towards the understanding of related conditions.  相似文献   

5.
An emerging area of research in autism spectrum disorder (ASD) is the role of prenatal exposure to inflammatory mediators during critical developmental periods. Epidemiological data has highlighted this relationship showing significant correlations between prenatal exposure to pathogens, including influenza, and the occurrence of ASD. Although there has not been a definitive molecular mechanism established, researchers have begun to investigate this relationship as animal models of maternal infection have support- ed epidemiological findings. Several groups utilizing these animal models have found that activation of the maternal immune system, termed maternal immune activation (MIA), and more specifically the exposure of the developing fetus to maternal cytokines precipitate the neurological, immunological and behavioral abnormalities observed in the offspring of these animals. These abnormalities have correlated with clinical findings of immune dysregulation, neurological and behavioral abnormalities in some autistic individuals. Additionally, researchers have observed genetic variations in these models in genes which regulate neurological and immunological development, similar to what is observed clinically in ASD. Altogether, the role of MIA and cytokine dysregulation, as a key mediator in the neuropathological, behavioral and possibly genetic irregularities observed clinically in autism are important factors that warrant further investigation.  相似文献   

6.
Mutations in CHD8 are one of the highest genetic risk factors for autism spectrum disorder. Studies in mice that investigate underlying mechanisms have shown Chd8 haploinsufficient mice display some trait disruptions that mimic clinical phenotypes, although inconsistencies have been reported in some traits across different models on the same strain background. One source of variation across studies may be the impact of Chd8 haploinsufficiency on maternal-offspring interactions. While differences in maternal care as a function of Chd8 genotype have not been studied directly, a previous study showed that pup survival was reduced when reared by Chd8 heterozygous dams compared with wild-type (WT) dams, suggesting altered maternal care as a function of Chd8 genotype. Through systematic observation of the C57BL/6 strain, we first determined the impact of Chd8 haploinsufficiency in the offspring on WT maternal care frequencies across preweaning development. We next determined the impact of maternal Chd8 haploinsufficiency on pup care. Compared with litters with all WT offspring, WT dams exhibited less frequent maternal behaviors toward litters consisting of offspring with mixed Chd8 genotypes, particularly during postnatal week 1. Dam Chd8 haploinsufficiency decreased litter survival and increased active maternal care also during postnatal week 1. Determining the impact of Chd8 haploinsufficiency on early life experiences provides an important foundation for interpreting offspring outcomes and determining mechanisms that underlie heterogeneous phenotypes.  相似文献   

7.
Epidemiological evidence has established links between immune activation during the prenatal or early postnatal period and increased risk of developing a range of neurodevelopment disorders in later life. Animal models have been used to great effect to explore the ramifications of immune activation during gestation and neonatal life. A range of behavioral, neurochemical, molecular, and structural outcome measures associated with schizophrenia, autism, cerebral palsy, and epilepsy have been assessed in models of prenatal and postnatal immune activation. However, the epidemiology-driven disease-first approach taken by some studies can be limiting and, despite the wealth of data, there is a lack of consensus in the literature as to the specific dose, timing, and nature of the immunogen that results in replicable and reproducible changes related to a single disease phenotype. In this review, we highlight a number of similarities and differences in models of prenatal and postnatal immune activation currently being used to investigate the origins of schizophrenia, autism, cerebral palsy, epilepsy, and Parkinson's disease. However, we describe a lack of synthesis not only between but also within disease-specific models. Our inability to compare the equivalency dose of immunogen used is identified as a significant yet easily remedied problem. We ask whether early life exposure to infection should be described as a disease-specific or general vulnerability factor for neurodevelopmental disorders and discuss the implications that either classification has on the design, strengths and limitations offuture experiments. ? 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2012.  相似文献   

8.
Deficits in social communication and language development belong to the earliest diagnostic criteria of autism spectrum disorders. Of the many risk factors for autism spectrum disorder, the contactin-associated protein-like 2 gene, CNTNAP2, is thought to be important for language development. The present study used a rat model to investigate the potential compounding effects of autism spectrum disorder risk gene mutation and environmental challenges, including breeding conditions or maternal immune activation during pregnancy, on early vocal communication in the offspring. Maternal isolation-induced ultrasonic vocalizations from Cntnap2 wildtype and knockout rats at selected postnatal days were analyzed for their acoustic, temporal and syntax characteristics. Cntnap2 knockout pups from heterozygous breeding showed normal numbers and largely similar temporal structures of ultrasonic vocalizations to wildtype controls, whereas both parameters were affected in homozygously bred knockouts. Homozygous breeding further exacerbated altered pitch and transitioning between call types found in Cntnap2 knockout pups from heterozygous breeding. In contrast, the effect of maternal immune activation on the offspring's vocal communication was confined to call type syntax, but left ultrasonic vocalization acoustic and temporal organization intact. Our results support the “double-hit hypothesis” of autism spectrum disorder risk gene–environment interactions and emphasize that complex features of vocal communication are a useful tool for identifying early autistic-like features in rodent models.  相似文献   

9.
Advanced paternal age (APA) is associated with an increased risk of adverse health outcomes in offspring, including autism and schizophrenia. In the present study, we investigated the behaviour of young (3‐month‐old; Control), middle aged (12 to 15‐month‐old; APA1) and old (24‐month‐old; APA2) C57BL/6J sires and their adult offspring. Male and female mice were tested at 10 weeks of age on a behavioural test battery including the elevated plus‐maze, hole board, light/dark emergence, forced swim test, novelty‐suppressed feeding and for prepulse inhibition of the acoustic startle response. Increasing the APA sire age to 24 months was shown to be associated with increased anxiety‐related behaviour in the offspring, and indicated that increasing APA sire age produced a more robust hypoexplorative phenotype. Thus, increasing paternal age was associated with an increase in severity of an anxiogenic phenotype in their adult offspring. Ultimately, the results of these studies show that mouse models of APA are valuable for elucidating the mechanisms by which APA influences brain‐related outcomes.  相似文献   

10.
There has been a surge of diagnosis of autism spectrum disorders (ASD) over the past decade. While large, high powered genome screening studies of children with ASD have identified numerous genetic risk factors, research efforts to understanding how each of these risk factors contributes to the development autism has met with limited success. Revealing the mechanisms by which these genetic risk factors affect brain development and predispose a child to autism requires mechanistic understanding of the neurobiological changes underlying this devastating group of developmental disorders at multifaceted molecular, cellular and system levels. It has been increasingly clear that the normal trajectory of neurodevelopment is compromised in autism, in multiple domains as much as aberrant neuronal production, growth, functional maturation, patterned connectivity, and balanced excitation and inhibition of brain networks. Many autism risk factors identified in humans have been now reconstituted in experimental mouse models to allow mechanistic interrogation of the biological role of the risk gene. Studies utilizing these mouse models have revealed that underlying the enormous heterogeneity of perturbed cellular events, mechanisms directing synaptic and circuit assembly may provide a unifying explanation for the pathophysiological changes and behavioral endophenotypes seen in autism, although synaptic perturbations are far from being the only alterations relevant for ASD. In this review, we discuss synaptic and circuit abnormalities obtained from several prevalent mouse models, particularly those reflecting syndromic forms of ASD that are caused by single gene perturbations. These compiled results reveal that ASD risk genes contribute to proper signaling of the developing gene networks that maintain synaptic and circuit homeostasis, which is fundamental to normal brain development.  相似文献   

11.
Autism is a neurodevelopmental disorder with early manifestation. It is a multifactorial disorder and several susceptible chromosomal regions for autism are identified through genome scan studies. The gene coding for glutamate receptor 6 (GluR6 or GRIK2) has been suggested as a candidate gene for autism based on its localization in the autism specific region on chromosome 6q21 and the involvement of receptor protein in cognitive functions like learning and memory. Despite its importance, so far no studies have been carried out on possible involvement of GluR6 with autism in the Indian population. Therefore in the present study, we have performed genetic analysis of three markers of GluR6 (SNP1: rs2227281, SNP2: rs2227283, SNP3: rs2235076) for possible association with autism through population, and family-based (TDT and HHRR) approaches. DSM-IV criteria and CARS/ADI-R have been utilized for diagnosis. Genotyping analysis for the SNPs has been carried out in 101 probands with autism spectrum disorder, 180 parents and 152 controls from different regions of India. Since the minor allele frequency of SNP3 was too low, the association studies have been carried out only for SNP1 and SNP2. Even though two earlier studies have shown association of these markers with autism, the present case–control and TDT, as well as HHRR analyses have not demonstrated any biased transmission of alleles or haplotypes to the affected offspring. Thus our results suggest that these markers of GluR6 are unlikely to be associated with autism in the Indian population.  相似文献   

12.
This article is part of a Special Issue "Neuroendocrine-Immune Axis in Health and Disease." Humans are exposed to potentially harmful agents (bacteria, viruses, toxins) throughout our lifespan; the consequences of such exposure can alter central nervous system development. Exposure to immunogens during pregnancy increases the risk of developing neurological disorders such as schizophrenia and autism. Further, sex hormones, such as estrogen, have strong modulatory effects on immune function and have also been implicated in the development of neuropathologies (e.g., schizophrenia and depression). Similarly, animal studies have demonstrated that immunogen exposure in utero or during the neonatal period, at a time when the brain is undergoing maturation, can induce changes in learning and memory, as well as dopamine-mediated behaviors in a sex-specific manner. Literature that covers the effects of immunogens on innate immune activation and ultimately the development of the adult brain and behavior is riddled with contradictory findings, and the addition of sex as a factor only adds to the complexity. This review provides evidence that innate immune activation during critical periods of development may have effects on the adult brain in a sex-specific manner. Issues regarding sex bias in research as well as variability in animal models of immune function are discussed.  相似文献   

13.
In this review, we provide a synopsis of work on the epidemiologic evidence for prenatal infection in the etiology of schizophrenia and autism. In birth cohort studies conducted by our group and others, in utero exposure to infectious agents, prospectively obtained after biomarker assays of archived maternal sera and by obstetric records was related to an increased risk of schizophrenia. Thus far, it has been demonstrated that prenatal exposure to influenza, increased toxoplasma antibody, genital-reproductive infections, rubella, and other pathogens are associated with schizophrenia. Anomalies of the immune system, including enhanced maternal cytokine levels, are also related to schizophrenia. Some evidence also suggests that maternal infection and immune dysfunction may be associated with autism. Although replication is required, these findings suggest that public health interventions targeting infectious exposures have the potential for preventing cases of schizophrenia and autism. Moreover, this work has stimulated translational research on the neurobiological and genetic determinants of these conditions. ? 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2012.  相似文献   

14.
Social stressors such as depressed maternal care and family conflict are robust challenges which can have long-term physiological and behavioral effects on offspring and future generations. The current study investigates the transgenerational effects of an ethologically relevant chronic social stress on the behavior and endocrinology of juvenile and adult rats. Exposure to chronic social stress during lactation impairs maternal care in F0 lactating dams and the maternal care of the F1 offspring of those stressed F0 dams. The overall hypothesis was that the male and female F2 offspring of stressed F1 dams would display decreased social behavior as both juveniles and adults and that these behavioral effects would be accompanied by changes in plasma corticosterone, prolactin, and oxytocin. Both the female and male F2 offspring of dams exposed to chronic social stress displayed decreased social behavior as juveniles and adults, and these behavioral effects were accompanied by decreases in basal concentrations of corticosterone in both sexes, as well as elevated juvenile oxytocin and decreased adult prolactin in the female offspring. The data support the conclusion that social stress has transgenerational effects on the social behavior of the female and male offspring which are mediated by changes in the hypothalamic–pituitary–adrenal axis and hypothalamic–pituitary–gonadal axis. Social stress models are valuable resources in the study of the transgenerational effects of stress on the behavioral endocrinology of disorders such as depression, anxiety, autism, and other disorders involving disrupted social behavior.  相似文献   

15.
Individuals with autism constitute a variable population whose members are spread along the autism spectrum. Subpopulations within that spectrum exhibit other conditions, such as anxiety, intellectual disabilities, hyperactivity and epilepsy, with different severities and co‐occurrences. Among the genes associated with the increased risk for autism is the methylenetetrahydrofolate‐reductase (MTHFR) 677C>T polymorphism, which impairs one‐carbon (C1) metabolic pathway efficiency. The frequency of the MTHFR677TT homozygote is markedly higher among autism patients and their mothers than in the general population. Here, we report on the Mthfr heterozygous knockout (KO) mouse as a rodent model of autism that shows the contributions of maternal and offspring genotypes to the development of autistic‐like behaviors. Maternal Mthfr‐deficiency was associated with developmental delays in morphogenic features and sensory‐motor reflexes in offspring. In the adult male mouse, behaviors representing core autism symptoms, such as repetitive behavior and restricted interest, were affected by maternal genotype while social behaviors were affected by both maternal and offspring genotypes. In females and males, behaviors associated with autism such as memory impairment, social aggression and anxiety were affected by both the maternal and offspring Mthfr genotypes, with sex‐dependent differences. Mthfr‐deficient male mice with observable impacts on behavior presented a particular laminar disturbance in parvalbumin interneuron density and innervation in superficial and deep layers of the cingulate cortex. This mouse model of autism will help to elucidate the molecular mechanisms that predispose a significant subgroup of autistic patients to abnormal development and to distinguish between the in‐utero and autonomous factors involved in autism.  相似文献   

16.
Experimental studies demonstrated that maternal exposure to certain environmental and dietary factors during early embryonic development can influence the phenotype of offspring as well as the risk of disease development at the later life. DNA methylation, an epigenetic phenomenon, has been suggested as a mechanism by which maternal nutrients affect the phenotype of their offspring in both honeybee and agouti mouse models. Phenotypic changes through DNA methylation can be linked to folate metabolism by the knowledge that folate, a coenzyme of one-carbon metabolism, is directly involved in methyl group transfer for DNA methylation. During the fetal period, organ-specific DNA methylation patterns are established through epigenetic reprogramming. However, established DNA methylation patterns are not immutable and can be modified during our lifetime by the environment. Aberrant changes in DNA methylation with diet may lead to the development of age-associated diseases including cancer. It is also known that the aging process by itself is accompanied by alterations in DNA methylation. Diminished activity of DNA methyltransferases (Dnmts) can be a potential mechanism for the decreased genomic DNA methylation during aging, along with reduced folate intake and altered folate metabolism. Progressive hypermethylation in promoter regions of certain genes is observed throughout aging, and repression of tumor suppressors induced by this epigenetic mechanism appears to be associated with cancer development. In this review, we address the effect of folate on early development and aging through an epigenetic mechanism, DNA methylation.  相似文献   

17.
Honest signalling models predict that the intensity of solicitation by offspring influences the level of provisioning provided by parents and reflects offspring need. The empirical evidence supporting these predictions primarily comes from studies of birds or mammals. Thus, although parental care of altricial offspring is taxonomically widespread, the generality of these models is not well known. To investigate whether honest signalling models apply to insects, we manipulated parent and offspring behaviour in the burying beetle Nicrophorus orbicollis, a species with advanced parental care. First, within biparental care, we manipulated the brood size to alter the parents'' perception of offspring need. We measured the care giving behaviour of male and female parents to examine whether either adjusts its level of care according to offspring need. In the second experiment, because two parents together provision the brood more often than single parents, we manipulated the number of care givers (uniparental and biparental care) and measured offspring solicitation to assess whether offspring change their behaviour in response to need. Our results show that parent behaviour is broadly consistent with the first prediction of the models; both sexes provisioned larger broods more often than smaller broods. Larval solicitation was also consistent with the second prediction; larvae that were provisioned less often begged more. Our results provide evidence that honest signalling models can be applied to insects as well as vertebrates, although there are also subtle differences in care giving behaviour that may be important.  相似文献   

18.
Dendrites and spines are the main neuronal structures receiving input from other neurons and glial cells. Dendritic and spine number, size, and morphology are some of the crucial factors determining how signals coming from individual synapses are integrated. Much remains to be understood about the characteristics of neuronal dendrites and dendritic spines in autism and related disorders. Although there have been many studies conducted using autism mouse models, few have been carried out using postmortem human tissue from patients. Available animal models of autism include those generated through genetic modifications and those non‐genetic models of the disease. Here, we review how dendrite and spine morphology and number is affected in autism and related neurodevelopmental diseases, both in human, and genetic and non‐genetic animal models of autism. Overall, data obtained from human and animal models point to a generalized reduction in the size and number, as well as an alteration of the morphology of dendrites; and an increase in spine densities with immature morphology, indicating a general spine immaturity state in autism. Additional human studies on dendrite and spine number and morphology in postmortem tissue are needed to understand the properties of these structures in the cerebral cortex of patients with autism. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419–437, 2017  相似文献   

19.
Parental microglial induced neuroinflammation, triggered by bacterial- or viral infections, can induce neuropsychiatric disorders like schizophrenia and autism to offspring in animal models. Recent investigations suggest that microglia, the resident immune cells of the brain, provides a link between neurotransmission, immune cell activation, brain inflammation and neuronal dysfunction seen with the offspring. Relatively little is known about how reduction of brain inflammation and restoration of glial function are associated with diminution of brain degeneration and behavioral deficits in offspring. Increased mGluR5 expression and the long-lasting excitotoxic effects of the neurotoxin during brain development are associated with the glial dysfunctions. We investigated the relationship of mGluR5 and PBR and how they regulate glial function and inflammatory processes in mice prenatally exposed to LPS (120μg/kg, between gestational days 15 and 17), an inflammatory model of a psychiatric disorder. Using PET imaging, we showed that pharmacological activation of mGluR5 during 5 weeks reduced expression of classic inflammation marker PBR in many brain areas and that this molecular association was not present in LPS-exposed offspring. The post-mortem analysis revealed that the down regulation of PBR was mediated through activation of mGluR5 in astrocytes. In addition, we demonstrated that this interaction is defective in a mouse model of the psychiatric deficit offering a novel insight of mGluR5 involvement to brain related disorders and PBR related imaging studies. In conclusion, mGluR5 driven glutamatergic activity regulates astrocytic functions associated with PBR (cholesterol transport, neurosteroidogenesis, glial phenotype) during maturation and could be associated with neuropsychiatric disorders in offspring.  相似文献   

20.
In this review, we focus on the role of the Shank family of proteins in autism. In recent years, autism research has been flourishing. With genetic, molecular, imaging and electrophysiological studies being supported by behavioural studies using animal models, there is real hope that we may soon understand the fundamental pathology of autism. There is also genuine potential to develop a molecular-level pharmacological treatment that may be able to deal with the most severe symptoms of autism, and clinical trials are already underway. The Shank family of proteins has been strongly implicated as a contributing factor in autism in certain individuals and sits at the core of the alleged autistic pathway. Here, we analyse studies that relate Shank to autism and discuss what light this sheds on the possible causes of autism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号