首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Enzymes of purine catabolism in soybean plants   总被引:2,自引:0,他引:2  
Remarkable formation and utilization of allantoin is observedin soybean (Glycine max variety A62-1). To study this, variousenzymes involved in purine catabolism (i.e., xanthine oxidase,uricase and allantoinase) were measured in different regionsof soybean plants during development. Uricase, which catalyzesthe direct formation of allantoin from uric acid, was studiedin detail. The activities of these three enzymes were highest in the rootnodules, indicating that the nodules are the major site of allantoinmetabolism. Radicles only showed appreciable activity about80 hr after the seeds were planted. Allantoinase activity wasdetected in all regions tested, showing that allantoin translocatedfrom the nodules can be metabolized in the roots, stem and leaves.In the nodules, xanthine oxidase was localized in the nuclearfraction, while uricase was mainly restricted to the mitochondrialfraction and allantoinase to the soluble fraction. Uricase was partially purified from the nodules and radicles,respectively. The pH optimum of enzyme from the nodules was9.5, whereas that of enzyme from the radicles was 7.0. The enzymefrom the nodules did not require a cofactor, while that fromthe radicles showed an absolute requirement for a cofactor,which was a low molecular substance easily separable from theapoprotein. Thus, the uricase in nodules differs in chemicalproperties from that in the host plant. The results are discussedin relation to change in the allantoin level in soybean tissues. (Received November 1, 1974; )  相似文献   

3.
Summary A large number of experiments were performed under a variety of conditions to test whether the nodule bacteria are capable of using atmospheric nitrogen apart from the host plant. The results have offered no encouragement to the belief that nitrogen fixation does take place.Organisms from clover nodules were repeatedly transferred in six media containing 3 widely different nitrogen sources, and after a number of transfers the cultures were tested for ability to fix nitrogen. There was no indication that the cultures could use atmospheric nitrogen.Mixed cultures of nodule bacteria with a number of organisms and in media of various nitrogen levels were found to make no gain in nitrogen. Association of rhizobia with Azotobacter did not appear to increase the nitrogen fixed by the latter; with Cl. acetobutylicum there was a slight increase in the nitrogen fixed.Respiring plant tissue was found to have no effect on nitrogen fixation by cultures of nodule bacteria, nor did nodules continue to fix nitrogen when removed from the plant.The Olaru experiments in which it is claimed manganese stimulated nitrogen fixation by the nodule bacteria, and the Golding experiments, in which removal of the products of growth was stressed, have been repeated, but our results have failed to confirm those of either Olaru or Golding. Herman Frasch Foundation Research in Agricultural Chemistry, Paper No. 25.  相似文献   

4.
The presence of purines and pyrimidines bases, nucleosides, and nucleotides in the culture medium has shown to differently affect the growth of a Chinese hamster ovary (CHO) cell line producing the secreted form of the human placental alkaline phosphatase enzyme (SEAP; Carvalhal et al., Biotech Prog. 2003;19:69-83). CHO, BHK, as well as Sf9 cell growth was clearly reduced in the presence of purines but was not affected by pyrimidines at the concentrations tested. The knowledge about the mechanisms by which nucleotides exert their effect when present outside the cells remains very incomplete. The catabolism of both extracellular purines and pyrimidines was followed during the culture of CHO cells. Purines/pyrimidines nucleotides added at a concentration of 1 mM to the culture medium decreased to negligible concentrations in the first 2 days. Purine and pyrimidine catabolism originated only purinic and pyrimidic end-products, respectively. The comparison between AMP catabolism in serum-free cultures (CHO cells expressing Factor VII and Sf9 cells) and in cultures containing serum (CHO cells expressing SEAP and BHK cells expressing Factor VII) showed that AMP extracellular catabolism is mediated by both cells and enzymes present in the serum. This work shows that the quantification of purines and pyrimidines in the culture medium is essential in animal cell culture optimization. When using AMP addition as a chemical cell growth strategy for recombinant protein production improvement, AMP extracellular concentration monitoring allows the optimization of the multiple AMP addition strategy for a prolonged cell culture duration with high specific productivity.  相似文献   

5.
Ehrlich ascites tumor cells containing radioactive ATP were incubated in vitro with a range of concentrations of 2-deoxyglucose in order to produce different rates of ATP catabolism. Concentrations of all radioactive products of ATP catabolism were measured, and apparent rates of adenylate deaminase and inosinate dehydrogenase and of adenylate and inosinate dephosphorylation were calculated. It was concluded that these processes were reggulated primarily by the rate of formation of substrate, and to a lesser extent in some cases, by substrate concentration. No evidence was obtained for regulation of these processes by the concentration of ATP. The deoxyglucose-induced catabolism of radioactive GTP was also studied. When ATP catabolism was induced by incubation with 2,4-dinitrophenol, time courses of accumulation of purine nucleoside monophosphates and rates of alternative pathways of their metabolism were quite different than when deoxyglucose was used.  相似文献   

6.
7.
8.
1. In eight Dalmatian dogs low and high purine intakes resulted in plasma urate levels from 25 to 185 mumol/l. 2. The relationship between purine intake and excretion of uric acid and allantoin per day was described by linear regression equations. 3. The elimination of endogenous purines was 1.8 mmol/day for urate and 1.7 mmol/day for allantoin. Exogenous purines increased renal excretion by 0.57 mmol/mmol. 4. Kinetic measurements with [2(-14)C]uric acid infused continuously into each of two dogs on low and high purine revealed increases of plasma pool (urate + allantoin) of 3.3 fold and entry rate of 4.0 fold. Conversion of urate into allantoin increased from 20 to 36%. 5. Renal elimination of catabolites increased 3.3 fold and exhalation rate of purine-CO2 379 fold. Extra-renal elimination at high purine intake was quantitatively similar to humans and closely related to pool size.  相似文献   

9.
Heroin affects purine nucleotides catabolism in rats in vivo   总被引:7,自引:0,他引:7  
Yang YD  Zhang JZ  Sun C  Yu HM  Li Q  Hong M 《Life sciences》2006,78(13):1413-1418
To investigate the effect of heroin on purine nucleotides catabolism, a rat model of heroin administration and withdrawal was established. Concentrations of uric acid, creatinine, and urea nitrogen in plasma and ADA in plasma, brain, liver, and small intestine were tested. When two heroin administration groups were compared with the control group, the concentrations of plasma uric acid and ADA in plasma, brain, liver, and small intestine increased, whereas the plasma urea nitrogen concentrations in two heroin administration groups and the plasma creatinine concentration in the 3-day heroin administration group did not increase. It seemed that heroin exposure for a short time did not affect renal clearance rate notably. When two withdrawal groups were compared with two heroin administration groups, the concentrations of plasma uric acid and ADA in liver and small intestine decreased, but there was no significant reduction in ADA concentrations of the brain, while the plasma ADA concentrations in the two withdrawal groups were significantly higher than those of two heroin administration groups. When the two withdrawal groups were compared with the control group, there was no significant difference in the concentrations of plasma uric acid and ADA in liver and small intestine, while the concentrations of ADA in plasma and brain were still higher than those of the control group. The results imply that heroin administration may enhance the catabolism of purine nucleotides in the brain and other tissues by increased concentration of ADA and the effect may last for a long time in the brain.  相似文献   

10.
11.
The catabolic turnover of vindoline and catharanthine, indole-dihydroindole alkaloids produced by Catharanthus roseus, occurs much more rapidly in apical cuttings than in intact plants. The implication of the results is that such alkaloids may participate actively in the plant's biochemical processes under certain conditions, in contradistinction to the general belief that plant alkaloids are metabolically insignificant.  相似文献   

12.
13.
Details of the recently elucidated biosynthetic pathways of caffeine and related purine alkaloids are reviewed. The main caffeine biosynthetic pathway is a sequence consisting of xanthosine-->7-methylxanthosine-->7-methylxanthine-->theobromine-->caffeine. Genes encoding N-methyltransferases involved in three of these four reactions have been isolated and the molecular structure of N-methyltransferases investigated. Pathways for the catabolism of caffeine have also been studied, although there are currently no reports of enzymatic and genetic studies having been successfully carried out. Metabolism of purine alkaloids in species including Camellia, Coffea, Theobroma and Ilex plants is summarised, and evidence for the involvement of caffeine in chemical defense and allelopathy is discussed. Finally, information is presented on metabolic engineering that has produced coffee seedlings with reduced caffeine content, and transgenic caffeine-producing tobacco plants with enhanced disease resistance.  相似文献   

14.
15.
16.
17.
Cyanobacteria have evolved mechanisms to adapt to environmental stress and nutrient availability, including accumulation of storage compounds in inclusions and granules. As arginine is a key building block of cyanophycin, a dynamic nitrogen reservoir in many cyanobacteria, arginine metabolism plays a key role in cyanobacterial nitrogen storage and remobilization. Recently, an arginine dihydrolase AgrE/ArgZ was identified as a major arginine‐degrading enzyme in nondiazotrophic Synechocystis, which catalyzes the conversion of arginine into ornithine and ammonia. The N‐terminal domain of AgrE/ArgZ is responsible for arginine dihydrolase activity. Burnat et al. (2019) identified the arginine catabolic pathway in diazotrophic Anabaena, which starts with the reaction catalyzed by AgrE/ArgZ. Moreover, this study identified the C‐terminal domain of AgrE/ArgZ as an ornithine cyclodeaminase that catalyze the conversion of ornithine to proline. The results demonstrated that arginine is catabolized to generate glutamate by the concerted action of AgrE/ArgZ and bifunctional proline oxidase PutA in the vegetative cells of Anabaena. These findings expand our knowledge on nitrogen mobilization and redistribution in Anabaena under nitrogen‐fixation conditions. AgrE/ArgZ is widely present in many diazotrophic cyanobacteria and may be important for their contribution to marine nitrogen fixation. AgrE/ArgZ may have potential applications in metabolic engineering and biotechnology.  相似文献   

18.
19.
GTP catabolism induced by sodium azide or deoxyglucose was studied in purine nucleoside phosphorylase (PNP) deficient human B lymphoblastoid cells. In PNP deficient cells, as in control cells, guanylate was both dephosphorylated and deaminated but dephosphorylation was the major pathway. Only nucleosides were excreted during GTP catabolism by PNP deficient cells and the main product was guanosine. The level of nucleoside excretion was largely affected by intracellular orthophosphate (Pi) level. In contrast, normal cells excreted nucleosides only at low Pi level while at high Pi levels, purine bases (guanine and hypoxanthine) were exclusively excreted. PNP deficiency had no effect on the extent of GMP deamination.  相似文献   

20.
A microbe’s ecological niche and biotechnological utility are determined by its specific set of co‐evolved metabolic pathways. The acquisition of new pathways, through horizontal gene transfer or genetic engineering, can have unpredictable consequences. Here we show that two different pathways for coumarate catabolism failed to function when initially transferred into Escherichia coli. Using laboratory evolution, we elucidated the factors limiting activity of the newly acquired pathways and the modifications required to overcome these limitations. Both pathways required host mutations to enable effective growth with coumarate, but the necessary mutations differed. In one case, a pathway intermediate inhibited purine nucleotide biosynthesis, and this inhibition was relieved by single amino acid replacements in IMP dehydrogenase. A strain that natively contains this coumarate catabolism pathway, Acinetobacter baumannii, is resistant to inhibition by the relevant intermediate, suggesting that natural pathway transfers have faced and overcome similar challenges. Molecular dynamics simulation of the wild type and a representative single‐residue mutant provide insight into the structural and dynamic changes that relieve inhibition. These results demonstrate how deleterious interactions can limit pathway transfer, that these interactions can be traced to specific molecular interactions between host and pathway, and how evolution or engineering can alleviate these limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号