首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obesity is characterized by an imbalance in the brain circuits promoting reward seeking and those governing cognitive control. Here we show that the dorsal caudate nucleus and its connections with amygdala, insula and prefrontal cortex contribute to abnormal reward processing in obesity. We measured regional brain glucose uptake in morbidly obese (n = 19) and normal weighted (n = 16) subjects with 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography (PET) during euglycemic hyperinsulinemia and with functional magnetic resonance imaging (fMRI) while anticipatory food reward was induced by repeated presentations of appetizing and bland food pictures. First, we found that glucose uptake rate in the dorsal caudate nucleus was higher in obese than in normal-weight subjects. Second, obese subjects showed increased hemodynamic responses in the caudate nucleus while viewing appetizing versus bland foods in fMRI. The caudate also showed elevated task-related functional connectivity with amygdala and insula in the obese versus normal-weight subjects. Finally, obese subjects had smaller responses to appetizing versus bland foods in the dorsolateral and orbitofrontal cortices than did normal-weight subjects, and failure to activate the dorsolateral prefrontal cortex was correlated with high glucose metabolism in the dorsal caudate nucleus. These findings suggest that enhanced sensitivity to external food cues in obesity may involve abnormal stimulus-response learning and incentive motivation subserved by the dorsal caudate nucleus, which in turn may be due to abnormally high input from the amygdala and insula and dysfunctional inhibitory control by the frontal cortical regions. These functional changes in the responsiveness and interconnectivity of the reward circuit could be a critical mechanism to explain overeating in obesity.  相似文献   

2.
We investigated differences in the intrinsic functional brain organization (functional connectivity) of the human reward system between healthy control participants and patients with social anxiety disorder. Functional connectivity was measured in the resting-state via functional magnetic resonance imaging (fMRI). 53 patients with social anxiety disorder and 33 healthy control participants underwent a 6-minute resting-state fMRI scan. Functional connectivity of the reward system was analyzed by calculating whole-brain temporal correlations with a bilateral nucleus accumbens seed and a ventromedial prefrontal cortex seed. Patients with social anxiety disorder, relative to the control group, had (1) decreased functional connectivity between the nucleus accumbens seed and other regions associated with reward, including ventromedial prefrontal cortex; (2) decreased functional connectivity between the ventromedial prefrontal cortex seed and lateral prefrontal regions, including the anterior and dorsolateral prefrontal cortices; and (3) increased functional connectivity between both the nucleus accumbens seed and the ventromedial prefrontal cortex seed with more posterior brain regions, including anterior cingulate cortex. Social anxiety disorder appears to be associated with widespread differences in the functional connectivity of the reward system, including markedly decreased functional connectivity between reward regions and between reward regions and lateral prefrontal cortices, and markedly increased functional connectivity between reward regions and posterior brain regions.  相似文献   

3.
The anterior insular cortex (AIC) is involved in emotional processes and gustatory functions which can be examined by imaging techniques. Such imaging studies showed increased activation in the insula in response to food stimuli as well as a differential activation in lean and obese people. Additionally, studies investigating lean subjects established the voluntary regulation of the insula by a real-time functional magnetic resonance imaging-brain computer interface (rtfMRI-BCI) approach. In this exploratory study, 11 lean and 10 obese healthy, male participants were investigated in a rtfMRI-BCI protocol. During the training sessions, all obese participants were able to regulate the activity of the AIC voluntarily, while four lean participants were not able to regulate at all. In successful regulators, functional connectivity during regulation vs. relaxation between the AIC and all other regions of the brain was determined by a seed voxel approach. Lean in comparison to obese regulators showed stronger connectivity in cingular and temporal cortices during regulation. We conclude, that obese people possess an improved capacity to self-regulate the anterior insula, a brain system tightly related to bodily awareness and gustatory functions.  相似文献   

4.
Critchley HD  Mathias CJ  Dolan RJ 《Neuron》2001,29(2):537-545
We used functional magnetic resonance neuroimaging to measure brain activity during delay between reward-related decisions and their outcomes, and the modulation of this delay activity by uncertainty and arousal. Feedback, indicating financial gain or loss, was given following a fixed delay. Anticipatory arousal was indexed by galvanic skin conductance. Delay-period activity was associated with bilateral activation in orbital and medial prefrontal, temporal, and right parietal cortices. During delay, activity in anterior cingulate and orbitofrontal cortices was modulated by outcome uncertainty, whereas anterior cingulate, dorsolateral prefrontal, and parietal cortices activity was modulated by degree of anticipatory arousal. A distinct region of anterior cingulate was commonly activated by both uncertainty and arousal. Our findings highlight distinct contributions of cognitive uncertainty and autonomic arousal to anticipatory neural activity in prefrontal cortex.  相似文献   

5.
Behavioral studies reveal that obese vs. lean individuals show attentional bias to food stimuli. Yet research has not investigated this relation using objective brain imaging or tested whether attentional bias to food stimuli predicts future weight gain, which are important aims given the prominence of food cues in the environment. We used functional magnetic resonance imaging (fMRI) to examine attentional bias in 35 adolescent girls ranging from lean to obese using an attention network task involving food and neutral stimuli. BMI correlated positively with speed of behavioral response to both appetizing food stimuli and unappetizing food stimuli, but not to neutral stimuli. BMI correlated positively with activation in brain regions related to attention and food reward, including the anterior insula/frontal operculum, lateral orbitofrontal cortex (OFC), ventrolateral prefrontal cortex (vlPFC), and superior parietal lobe, during initial orientation to food cues. BMI also correlated with greater activation in the anterior insula/frontal operculum during reallocation of attention to appetizing food images and with weaker activation in the medial OFC and ventral pallidum during reallocation of attention to unappetizing food images. Greater lateral OFC activation during initial orientation to appetizing food cues predicted future increases in BMI. Results indicate that overweight is related to greater attentional bias to food cues and that youth who show elevated reward circuitry responsivity during food cue exposure are at increased risk for weight gain.  相似文献   

6.

Background

Recent evidence suggests that the gut microbiota is an important contributing factor to obesity and obesity related metabolic disorders, known as the metabolic syndrome. The aim of this study was to characterise the intestinal microbiota in two pig models of obesity namely Göttingen minipigs and the Ossabaw minipigs.

Methods and Findings

The cecal, ileal and colonic microbiota from lean and obese Osabaw and Göttingen minipigs were investigated by Illumina-based sequencing and by high throughput qPCR, targeting the 16S rRNA gene in different phylogenetic groups of bacteria. The weight gain through the study was significant in obese Göttingen and Ossabaw minipigs. The lean Göttingen minipigs’ cecal microbiota contained significantly higher abundance of Firmicutes (P<0.006), Akkermensia (P<0.01) and Methanovibribacter (P<0.01) than obese Göttingen minipigs. The obese Göttingen cecum had higher abundances of the phyla Spirochaetes (P<0.03), Tenericutes (P<0.004), Verrucomicrobia (P<0.005) and the genus Bacteroides (P<0.001) compared to lean minipigs. The relative proportion of Clostridium cluster XIV was 7.6-fold higher in cecal microbiota of obese Göttingen minipigs as compared to lean. Obese Ossabaw minipigs had a higher abundance of Firmicutes in terminal ileum and lower abundance of Bacteroidetes in colon than lean Ossabaw minipigs (P<0.01). Obese Ossabaws had significantly lower abundances of the genera Prevotella and Lactobacillus and higher abundance of Clostridium in their colon than the lean Ossabaws. Overall, the Göttingen and Ossabaw minipigs displayed different microbial communities in response to diet-induced obesity in the different sections of their intestine.

Conclusion

Obesity-related changes in the composition of the gut microbiota were found in lean versus obese Göttingen and Ossabaw minipigs. In both pig models diet seems to be the defining factor that shapes the gut microbiota as observed by changes in different bacteria divisions between lean and obese minipigs.  相似文献   

7.
Objective: To investigate the response of the brains of women to the ingestion of a meal. Research Methods and Procedures: We used measures of regional cerebral blood flow (rCBF), a marker of neuronal activity, by positron emission tomography to describe the functional anatomy of satiation, i.e., the response to a liquid meal in the context of extreme hunger (36‐hour fast) in 10 lean (BMI ≤ 25 kg/m2; 32 ± 10 years old, 61 ± 7 kg; mean ± SD) and 12 obese (BMI ≥ 35 kg/m2; 30 ± 7 years old, 110 ± 14 kg) women. Results: In lean and obese women, satiation produced significant increases in rCBF in the vicinity of the prefrontal cortex (p < 0.005). Satiation also produced significant decreases in rCBF in several regions including the thalamus, insular cortex, parahippocampal gyrus, temporal cortex, and cerebellum (in lean and obese women), and hypothalamus, cingulate, nucleus accumbens, and amygdala (in obese women only; all p < 0.005). Compared with lean women, obese women had significantly greater increases in rCBF in the ventral prefrontal cortex and had significantly greater decreases in the paralimbic areas and in areas of the frontal and temporal cortex. Discussion: This study indicates that satiation elicits differential brain responses in obese and lean women. It also lends additional support to the hypothesis that the paralimbic areas participate in a central orexigenic network modulated by the prefrontal cortex through feedback loops.  相似文献   

8.
The impact of maternal obesity on brain monoamine function in adult offspring of dams selectively bred to express diet-induced obesity (DIO) or diet resistance (DR) was assessed by making dams obese or lean during gestation and lactation. After 12 wk on chow and 4 wk on a 31% fat diet, offspring hypothalamic nucleus size and [(3)H]nisoxetine binding to norepinephrine transporters (NET) and [(3)H]paroxetine binding to serotonin transporters (SET) were measured. Offspring of obese DIO dams became more obese than all other groups, but maternal obesity did not alter weight gain in DR offspring (25). Maternal obesity was associated with 10-17% enlargement of ventromedial nuclei (VMN) and dorsomedial nuclei in both DIO and DR offspring. Offspring of obese DIO dams had 25-88% lower NET binding in the paraventricular nuclei (PVN), arcuate nuclei, VMN, and the central amygdalar nuclei, while offspring of obese DR dams had 43-67% higher PVN and 90% lower VMN NET binding and a generalized increase in SET binding across all hypothalamic areas compared with other groups. Thus maternal obesity was associated with alterations in offspring brain monoamine metabolism, which varied as a function of genotype and the development of offspring obesity.  相似文献   

9.
Disinhibition over drug use, enhanced salience of drug use and decreased salience of natural reinforcers are thought to play an important role substance dependence. Whether this is also true for pathological gambling is unclear. To understand the effects of affective stimuli on response inhibition in problem gamblers (PRGs), we designed an affective Go/Nogo to examine the interaction between response inhibition and salience attribution in 16 PRGs and 15 healthy controls (HCs).Four affective blocks were presented with Go trials containing neutral, gamble, positive or negative affective pictures. The No-Go trials in these blocks contained neutral pictures. Outcomes of interest included percentage of impulsive errors and mean reaction times in the different blocks. Brain activity related to No-Go trials was assessed to measure response inhibition in the various affective conditions and brain activity related to Go trials was assessed to measure salience attribution.PRGs made fewer errors during gamble and positive trials than HCs, but were slower during all trials types. Compared to HCs, PRGs activated the dorsolateral prefrontal cortex, anterior cingulate and ventral striatum to a greater extent while viewing gamble pictures. The dorsal lateral and inferior frontal cortex were more activated in PRGs than in HCs while viewing positive and negative pictures. During neutral inhibition, PRGs were slower but similar in accuracy to HCs, and showed more dorsolateral prefrontal and anterior cingulate cortex activity. In contrast, during gamble and positive pictures PRGs performed better than HCs, and showed lower activation of the dorsolateral and anterior cingulate cortex.This study shows that gambling-related stimuli are more salient for PRGs than for HCs. PRGs seem to rely on compensatory brain activity to achieve similar performance during neutral response inhibition. A gambling-related or positive context appears to facilitate response inhibition as indicated by lower brain activity and fewer behavioural errors in PRGs.  相似文献   

10.

Background and Objectives

Obesity is emerging as the most significant health concern of the twenty-first century. A wealth of neuroimaging data suggest that weight gain might be related to aberrant brain function, particularly in prefrontal cortical regions modulating mesolimbic addictive responses to food. Nevertheless, food addiction is currently a model hotly debated. Here, we conduct a meta-analysis of neuroimaging data, examining the most common functional differences between normal-weight and obese participants in response to food stimuli.

Data Source

We conducted a search using several journal databases and adhered to the ‘Preferred Reporting Items for Systematic Reviews and Meta-analyses’ (PRISMA) method. To this aim, 10 studies were found with a total of 126 obese participants, 129 healthy controls, equaling 184 foci (146 increased, 38 decreased activation) using the Activation Likelihood Estimation (ALE) technique. Out of the 10 studies, 7 investigated neural responses to food versus non-food images.

Results

In response to food images, obese in comparison to healthy weight subjects had increased activation in the left dorsomedial prefrontal cortex, right parahippocampal gyrus, right precentral gyrus and right anterior cingulate cortex, and reduced activation in the left dorsolateral prefrontal cortex and left insular cortex.

Conclusions

Prefrontal cortex areas linked to cognitive evaluation processes, such as evaluation of rewarding stimuli, as well as explicit memory regions, appear most consistently activated in response to images of food in those who are obese. Conversely, a reduced activation in brain regions associated with cognitive control and interoceptive awareness of sensations in the body might indicate a weakened control system, combined with hypo-sensitivity to satiety and discomfort signals after eating in those who are prone to overeat.  相似文献   

11.

Introduction

Neuroscience evidence suggests that adolescent obesity is linked to brain dysfunctions associated with enhanced reward and somatosensory processing and reduced impulse control during food processing. Comparatively less is known about the role of more stable brain structural measures and their link to personality traits and neuropsychological factors on the presentation of adolescent obesity. Here we aimed to investigate regional brain anatomy in adolescents with excess weight vs. lean controls. We also aimed to contrast the associations between brain structure and personality and cognitive measures in both groups.

Methods

Fifty-two adolescents (16 with normal weight and 36 with excess weight) were scanned using magnetic resonance imaging and completed the Sensitivity to Punishment and Sensitivity to Reward Questionnaire (SPSRQ), the UPPS-P scale, and the Stroop task. Voxel-based morphometry (VBM) was used to assess possible between-group differences in regional gray matter (GM) and to measure the putative differences in the way reward and punishment sensitivity, impulsivity and inhibitory control relate to regional GM volumes, which were analyzed using both region of interest (ROI) and whole brain analyses. The ROIs included areas involved in reward/somatosensory processing (striatum, somatosensory cortices) and motivation/impulse control (hippocampus, prefrontal cortex).

Results

Excess weight adolescents showed increased GM volume in the right hippocampus. Voxel-wise volumes of the second somatosensory cortex (SII) were correlated with reward sensitivity and positive urgency in lean controls, but this association was missed in excess weight adolescents. Moreover, Stroop performance correlated with dorsolateral prefrontal cortex volumes in controls but not in excess weight adolescents.

Conclusion

Adolescents with excess weight have structural abnormalities in brain regions associated with somatosensory processing and motivation.  相似文献   

12.
Two neuroimaging studies using fMRI were conducted in order to assess the cortical processes involved in the perception and suppression of pain. In the first study, 15 healthy subjects were stimulated with variable intensities of electrical pulses during a discrimination task. In the second study, the same subjects had to try to suppress the feeling of pain during tonic stimulation. The discrimination task resulted in cortical activation of contralateral SI, corresponding in extent to the intensity of the stimulus. Activation of contralateral operculum/posterior insula (SII) and non-dominant dorsolateral prefrontal cortex (DLPFC) with non-painful stimuli changed to activations of non-dominant anterior insula upon painful stimulation. In the second study, all subjects succeeded in suppressing the feeling of pain during previously painful levels of stimulation. During this suppression task, activations changed from anterior to posterior insula; also there was a suppression of activity in the anterior cingulated cortex (ACC) and caudate nucleus. Subjects seem to be able to suppress to a certain degree the feeling of pain under constant (and previously painful) stimulation. The cortical correlate seems to be a shift of cerebral activation from anterior to posterior right insula and a suppression of activity in the ACC and caudate nucleus.  相似文献   

13.
Two neuroimaging studies using fMRI were conducted in order to assess the cortical processes involved in the perception and suppression of pain. In the first study, 15 healthy subjects were stimulated with variable intensities of electrical pulses during a discrimination task. In the second study, the same subjects had to try to suppress the feeling of pain during tonic stimulation. The discrimination task resulted in cortical activation of contralateral SI, corresponding in extent to the intensity of the stimulus. Activation of contralateral operculum/posterior insula (SII) and non-dominant dorsolateral prefrontal cortex (DLPFC) with non-painful stimuli changed to activations of non-dominant anterior insula upon painful stimulation. In the second study, all subjects succeeded in suppressing the feeling of pain during previously painful levels of stimulation. During this suppression task, activations changed from anterior to posterior insula; also there was a suppression of activity in the anterior cingulated cortex (ACC) and caudate nucleus. Subjects seem to be able to suppress to a certain degree the feeling of pain under constant (and previously painful) stimulation. The cortical correlate seems to be a shift of cerebral activation from anterior to posterior right insula and a suppression of activity in the ACC and caudate nucleus.  相似文献   

14.
Age-related differences in the multichemical proton magnetic resonance spectroscopy (1H-MRS) profile of the human brain have been reported for several age groups, and most consistently for ages from neonates to 16-year-olds. Our recent 1H-MRS study demonstrated a significant age-related increase of total chemical concentration (relative to creatine) in the prefrontal and sensorimotor cortices within young adulthood (19-31-year-olds). In the present study we test the hypothesis that the level of brain chemicals in the same cortices, which show increased chemical levels during normal development, are reduced with normal aging after young adulthood. The multichemical 1H-MRS profile of the brain was compared between 19 young and 16 middle-aged normal subjects across multiple brain regions for all chemicals of 1H-MRS spectra. Chemical concentrations were measured relative to creatine. Over all age groups the total relative chemical concentration was highest in the prefrontal cortex. Middle-aged subjects demonstrated a significant decrease of total relative chemical concentration in the dorsolateral prefrontal (F = 54.8, p < 10(-7), ANOVA), orbital frontal (F = 3.7, p < 0.05) and sensorimotor (F = 15.1, p < 0.0001) cortices, as compared with younger age. Other brain regions showed no age-dependent differences. The results indicate that normal aging alters multichemical 1H-MRS profile of the human brain and that these changes are region-specific, with the largest changes occuring in the dorsolateral prefrontal cortex. These findings provide evidence that the processes of neuronal maturation of the human brain, and neurotransmitters and other chemical changes as the marker of these neuronal changes are almost finished by young adulthood and then reduced during normal aging toward middle age period of life. The present data also support the notion of heterochronic regressive changes of the aging human brain, where the multichemical brain regional profile seems to inversely recapitulate cortical chemical maturation within normal development.  相似文献   

15.
Estimating size and distance is crucial in effective visuomotor control. The concept of an internal coordinate system implies that visual and motor size parameters are scaled onto a common template. To dissociate perceptual and motor components in such scaling, we performed an fMRI experiment in which 16 right-handed subjects copied geometric figures while the result of drawing remained out of sight. Either the size of the example figure varied while maintaining a constant size of drawing (visual incongruity) or the size of the examples remained constant while subjects were instructed to make changes in size (motor incongruity). These incongruent were compared to congruent conditions. Statistical Parametric Mapping (SPM8) revealed brain activations related to size incongruity in the dorsolateral prefrontal and inferior parietal cortex, pre-SMA / anterior cingulate and anterior insula, dominant in the right hemisphere. This pattern represented simultaneous use of a ‘resized’ virtual template and actual picture information requiring spatial working memory, early-stage attention shifting and inhibitory control. Activations were strongest in motor incongruity while right pre-dorsal premotor activation specifically occurred in this condition. Visual incongruity additionally relied on a ventral visual pathway. Left ventral premotor activation occurred in all variably sized drawing while constant visuomotor size, compared to congruent size variation, uniquely activated the lateral occipital cortex additional to superior parietal regions. These results highlight size as a fundamental parameter in both general hand movement and movement guided by objects perceived in the context of surrounding 3D space.  相似文献   

16.
In this study, we examined the effect of the acute p.o. administration of the antipsychotic drug mosapramine, as well as the antipsychotic drugs clozapine, haloperidol and risperidone, on the expression of Fos protein in the medial prefrontal cortex, nucleus accumbens and dorsolateral striatum of rat brain. The administration of mosapramine (1 or 3 mg/kg) significantly increased the number of Fos protein positive neurons in the medial prefrontal cortex, but not in the dorsolateral striatum. In addition, mosapramine (1, 3 or 10 mg/kg) produced a dose-dependent increase in the number of Fos protein positive neurons in the nucleus accumbens. The acute administration of 10 mg/kg of mosapramine significantly increased the number of Fos protein positive neurons in all brain regions. The acute administration of clozapine (30 mg/kg), similarly to mosapramine at lower doses (1 or 3 mg/kg), significantly increased the number of Fos protein positive neurons in the medial prefrontal cortex and nucleus accumbens, but not dorsolateral striatum. In contrast, haloperidol (0.3 mg/kg) significantly increased the number of Fos protein positive neurons in the nucleus accumbens and dorsolateral striatum, but not medial prefrontal cortex. The acute administration of risperidone (0.3 or 1 mg/kg) did not affect the number of Fos protein positive neurons in the medial prefrontal cortex, nucleus accumbens or dorsolateral striatum of rat brain, whereas a 3 mg/kg dose of risperidone significantly increased the number of Fos protein positive neurons in all brain regions. These results suggest that the ability of mosapramine to enhance expression of Fos protein in the medial prefrontal cortex may contribute to a clozapine-like profile with respect to actions on negative symptoms in schizophrenia. Furthermore, the lack of effect of low doses of mosapramine on Fos protein expression in the dorsolateral striatum, an area believed to play a role in movement, suggests that it may have a lower tendency to induce neurological side effects.  相似文献   

17.
Ota M  Yasuno F  Ito H  Seki C  Nozaki S  Asada T  Suhara T 《Life sciences》2006,79(8):730-736
Loss of dopamine synthesis in the striatum with normal human aging has been observed in the postmortem brain. To investigate whether there is age-associated change in dopamine synthesis in the extrastriatal brain regions similar to that in the striatum, positron emission tomography studies with (11)C-labelled l-DOPA were performed on 21 normal healthy male subjects (age range 20-67 years). Decline in the tissue fraction of gray matter per region of interest was also investigated. The overall uptake rate constant for each region of interest was quantified by the Patlak plot method using the occipital cortex as reference region. Regions of interest were set on the dorsolateral prefrontal cortex, lateral temporal cortex, medial temporal cortex, occipital cortex, parietal cortex, anterior cingulate, thalamus, midbrain, caudate nucleus, and putamen. Test-retest analysis indicated good reproducibility of the overall uptake rate constant. Significant age-related declines of dopamine synthesis were observed in the striatum and extrastriatal regions except midbrain. The decline in the overall uptake rate constant was more prominent than in the tissue fraction of gray matter. These results indicate that the previously demonstrated age-related decline in striatal dopamine synthesis extends to several extrastriatal regions in normal human brain.  相似文献   

18.
Humans have evolved strong preferences for equity and fairness. Neuroimaging studies suggest that punishing unfairness is associated with the activation of a neural network comprising the anterior cingulate cortex, anterior insula, the ventral striatum, and the dorsolateral prefrontal cortex (DLPFC). Here, we report the neuronal correlates of retribution and “forgiveness” in a scenario, in which individuals first acted as a recipient in an Ultimatum Game, and subsequently assumed the position of a proposer in a Dictator Game played against the same opponents as in the Ultimatum Game. Most subjects responded in a tit-for-tat fashion, which was accompanied by activation of the ventral striatum, corroborating previous findings that punishing unfair behaviour has a rewarding connotation. Subjects distinguished between the human opponent and computer condition by activation of the ventromedial PFC in the human condition, indicative of mentalising. A substantial number of subjects did not retaliate. Neurally, this “forgiveness” behaviour was associated with the activation of the right (and to a lesser degree left) DLPFC, a region that serves as a cognitive control region and thus may be involved in inhibiting emotional responses against unfairness.  相似文献   

19.

Background

It has been suggested that working memory deficits is a core feature of symptomatology of schizophrenia, which can be detected in patients and their unaffected relatives. The impairment of working memory has been found related to the abnormal activity of human brain regions in many functional magnetic resonance imaging (fMRI) studies. This study investigated how brain region activation was altered in schizophrenia and how it was inherited independently from performance deficits.

Method

The authors used fMRI method during N-back task to assess working memory related cortical activation in four groups (N = 20 in each group, matching task performance, age, gender and education): schizophrenic patients, their unaffected biological parents, young healthy controls for the patients and older healthy controls for their parents.

Results

Compared to healthy controls, patients showed an exaggerated response in the right dorsolateral prefrontal cortex (brodmann area [BA] 46) and bilateral ventrolateral prefrontal cortex, and had reduced activation in bilateral dorsolateral prefrontal cortex (BA 9). In the conjunction analysis, the effect of genetic risk (parents versus older control) shared significantly overlapped activation with effect of disease (patients versus young control) in the right middle frontal gyrus (BA 46) and left inferior parietal gyrus (BA 40).

Conclusions

Physiological inefficiency of dorsal prefrontal cortex and compensation involvement of ventral prefrontal cortex in working memory function may one physiological characteristics of schizophrenia. And relatively inefficient activation in dorsolateral prefrontal cortex probably can be a promising intermediate phenotype for schizophrenia.  相似文献   

20.
Humans have a strong preference for fair distributions of resources. Neuroimaging studies have shown that being treated unfairly coincides with activation in brain regions involved in signaling conflict and negative affect. Less is known about neural responses involved in violating a fairness norm ourselves. Here, we investigated the neural patterns associated with inequity, where participants were asked to choose between an equal split of money and an unequal split that could either maximize their own (advantageous inequity) or another person’s (disadvantageous inequity) earnings. Choosing to divide money unequally, irrespective who benefited from the unequal distribution, was associated with activity in the dorsal anterior cingulate cortex, anterior insula and the dorsolateral prefrontal cortex. Inequity choices that maximized another person’s profits were further associated with activity in the ventral striatum and ventromedial prefrontal cortex. Taken together, our findings show evidence of a common neural pattern associated with both advantageous and disadvantageous inequity in sharing decisions and additional recruitment of neural circuitry previously linked to the computation of subjective value and reward when violating a fairness norm at the benefit of someone else.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号