首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ISL1: a new transposable element in Lactobacillus casei   总被引:2,自引:0,他引:2  
Summary The genome structures of a temperate Lactobacillus phage, FSW, and its virulent mutants, FSVs, were examined by restriction, heteroduplex and nucleotide-sequence analyses. The results showed that two out of three FSVs had the same 1.3 kbp insertion (designated as ISL1) at different positions in the FSW sequence. ISL1 was 1,256 bp long and contained at least two long open reading frames of 279 and 822 bases on one strand. Inverted repeats were found at the termini of the ISL1 which was bracketed by 3 bp direct repeats of the FSW sequence. From this evidence, we concluded that ISL1 was a transposable element in Lactobacillus casei.  相似文献   

2.
3.
Various mathematical models have been used to explore the dynamics of transposable elements (TEs) within their host genomes. However, numerous factors can influence their dynamics, and we know only little about the dynamics of TEs when they first began to invade populations. In addition, the influence of population structuring has only recently been investigated. Transposable Element Simulator Dynamics, a population genomics simulation environment, has therefore been developed to provide a simple tool for analyzing the dynamics of TEs in a community based on (i) various TE parameters, such as the transposition and excision rates, the recombination rate and the coefficient of selection against TE insertions; and (ii) population parameters, such as population size and migration rates. The simulations can be used to illustrate the dynamic fate of TEs in structured populations, can be extended by using more specific molecular or demographic models, and can be useful for teaching population genetics and genomics. AVAILABILITY: TESD is distributed under GPL from the P?le Bioinformatique Lyonnais (PBIL) web server at http://pbil.univ-lyon1.fr/software/TESD  相似文献   

4.
5.
LINE-1 transposable elements (L1s) are ubiquitous in mammals and are thought to have remained active since before the mammalian radiation. Only one L1 extinction event, in South American rodents in the genus Oryzomys, has been convincingly demonstrated. Here we examine the phylogenetic limits and evolutionary tempo of that extinction event by characterizing L1s in related rodents. Fourteen genera from five tribes within the Sigmodontinae subfamily were examined. Only the Sigmodontini, the most basal tribe in this group, demonstrate recent L1 activity. The Oryzomyini, Akodontini, Phyllotini, and Thomasomyini contain only L1s that appear to have inserted long ago; their L1s lack open reading frames, have mutations at conserved amino acid residues, and show numerous private mutations. They also lack restriction site-defined L1 subfamilies specific to any species, genus or tribe examined, and fail to form monophyletic species, genus or tribal L1 clusters. We determine here that this L1 extinction event occurred roughly 8.8 million years ago, near the divergence of Sigmodon from the remaining Sigmodontinae species. These species appear to be ideal model organisms for studying the impact of L1 inactivity on mammalian genomes.  相似文献   

6.
Three closely related parthenogenetic species of root-knot nematodes, collectively termed the Meloidogyne incognita-group, are economically significant pathogens of diverse crop species. Remarkably, these asexual root-knot nematodes are capable of acquiring heritable changes in virulence even though they lack sexual reproduction and meiotic recombination. Characterization of a near isogenic pair of M. javanica strains differing in response to tomato with the nematode resistance gene Mi-1 showed that the virulent strain carried a deletion spanning a gene called Cg-1. Herein, we present evidence that the Cg-1 gene lies within a member of a novel transposable element family (Tm1; Transposon in Meloidogyne-1). This element family is defined by composite terminal inverted repeats of variable lengths similar to those of Foldback (FB) transposable elements and by 9 bp target site duplications. In M. incognita, Tm1 elements can be classified into three general groups: 1) histone-hairpin motif elements; 2) MITE-like elements; 3) elements encoding a putative transposase. The predicted transposase shows highest similarity to gene products encoded by aphids and mosquitoes and resembles those of the Phantom subclass of the Mutator transposon superfamily. Interestingly, the meiotic, sexually-reproducing root-knot nematode species M. hapla has Tm1 elements with similar inverted repeat termini, but lacks elements with histone hairpin motifs and contains no elements encoding an intact transposase. These Tm1 elements may have impacts on root-knot nematode genomes and contribute to genetic diversity of the asexual species.  相似文献   

7.
Summary The nucleotide sequence of an IS1 element recently transposed into the lacI gene is reported. This sequence is nearly identical to one previously reported for another IS1 element (Ohtsubo and Ohtsubo, 1978). The implications of this similarity are discussed. The sizes of potential polypeptides encoded in the IS1 DNA have been determined and possible roles for these peptides in the illegitimate recombination events mediated by the element are considered.  相似文献   

8.
A family of transposable genetic elements in the genome of the frog, Xenopus laevis, is described. They are designated Tx1. Transposability of the elements was deduced by characterization of a chromosomal locus which is polymorphic for the presence or absence of a Tx1 element. Nucleotide sequence analysis suggested that Tx1 elements show target site specificity, as they are inserted at the pentanucleotide TTTAA in all four cases that were examined. The elements appear to have 19-base-pair (bp) inverted terminal repeats, and they are flanked by 4-bp target duplications (TTAA), although the possibility that they do not create target site duplications is discussed. Tx1 elements have several unusual characteristics: the central portion of each element is comprised of a variable number of two types of 393-bp repeating units; the rightmost 1,000 bp of the element contains separate regions potentially capable of forming bends, left-handed Z-form DNA, and alternative stem-loop structures. Comparisons among single frogs suggest that germ line transposition is relatively infrequent and that variations in numbers of internal repeats accumulate quite slowly at any locus.  相似文献   

9.
The I-R element at the R locus destabilizes kernel pigmentation giving the variegated pattern known as stippled ( R-st). In trans linkage phase with R-st the element was shown to act as a modifier of stippled, intensifying seed spotting in parallel with effects of the dominant linked modifier M-st. Presence of I-R in the genome was, therefore, shown to be detectable as a modifier of R-st. When this test was used, new modifiers resembling M-st were often detected following mutations of R-st to the stable allele R-sc. Such mutations evidently occurred by transposition of I-R away from the R locus to a site where it was identifiable as a modifier. M-st may be such a transposed I-R. Analysis of mutations to R-sc during the second (sperm-forming) mitosis in pollen grains showed that some of the transposed I-R elements were linked with R, whereas others assorted independently. Their strengths varied from barely discernible to a level equal to M-st. Overreplication frequently accompanied transposition at the sperm-forming mitosis, leading to transposed I-R elements in both the mutant and nonmutant sperm.  相似文献   

10.
Mammalian cells contain numerous nonallelic repeated sequences, such as multicopy genes, gene families, and repeated elements. One common feature of nonallelic repeated sequences is that they are homeologous (not perfectly identical). Our laboratory has been studying recombination between homeologous sequences by using LINE-1 (L1) elements as substrates. We showed previously that an exogenous L1 element could readily acquire endogenous L1 sequences by nonreciprocal homologous recombination. In the study presented here, we have investigated the propensity of exogenous L1 elements to be involved in a reciprocal process, namely, crossing-overs. This would result in the integration of the exogenous L1 element into an endogenous L1 element. Of over 400 distinct integration events analyzed, only 2% involved homologous recombination between exogenous and endogenous L1 elements. These homologous recombination events were imprecise, with the integrated vector being flanked by one homologous and one illegitimate junction. This type of structure is not consistent with classical crossing-overs that would result in two homologous junctions but rather is consistent with one-sided homologous recombination followed by illegitimate integration. Contrary to what has been found for reciprocal homologous integration, the degree of homology between the exogenous and endogenous L1 elements did not seem to play an important role in the choice of recombination partners. These results suggest that although exogenous and endogenous L1 elements are capable of homologous recombination, this seldom leads to crossing-overs. This observation could have implications for the stability of mammalian genomes.  相似文献   

11.
A transposable element, Flipper, was isolated from the phytopathogenic fungus Botrytis cinerea. The element was identified as an insertion sequence within the coding region of the nitrate reductase gene. The Flipper sequence is 1842?bp long with perfect inverted terminal repeats (ITRs) of 48?bp and an open reading frame (ORF) of 533 amino acids, potentially encoding for a transposase; the element is flanked by the dinucleotide TA. The encoded protein is very similar to the putative transposases of three elements from other phytopathogenic fungi, Fot1 from Fusarium oxysporum, and Pot2 and MGR586 from Magnaporthe grisea. The number of Flipper elements in strains of B. cinerea varied from 0 to 20 copies per genome. Analysis of the descendants of one cross showed that the segregation ratio of Flipper elements was 2:2 and that the copies were not linked.  相似文献   

12.
《Gene》1997,188(2):235-237
A mariner-like element termed mle-1 was discovered in the parasitic nematode Trichostrongylus colubriformis. The mle-1 has features which support its assignment as a mariner-like transposable element. Cloned mle-1 was derived from an intron of the tar-1 gene. It comprises 893 bp, includes two 27 bp flanking perfect inverted repeats and is present at approximately 50 copies in the genome. The element contains a coding region which displays homology to transposases, with the greatest amino acid similarity to a Caenorhabditis elegans mariner-like transposase. The coding region contains two 12 bp repeats; these repeats flank an 11 bp segment which accounts for a frameshift in this region. As a candidate transposon, mle-1 provides potential for genetic manipulation of this and related organisms. © 1997 Elsevier Science B.V. All rights reserved.  相似文献   

13.
A transposable element has been isolated from the industrially important fungus Aspergillus niger (strain N402). The element was identified as an insertion sequence within the coding region of the nitrate reductase gene. It had inserted at a TA site and appeared to have duplicated the target site upon insertion. The isolated element was found to be 4798 by in length and contained 37-bp inverted, imperfect, terminal repeats (ITRs). The sequence of the central region of the element revealed an open reading frame (designated ORF1) which showed similarity, at the amino acid level, to the transposase of the Tc1/mariner class of DNA transposons. Another sequence within the central region of the element showed similarity to the 3′ coding and downstream untranslated region of the amyA gene of A. niger. Sequence homology and structural features indicate that this element, which has been named Ant1 (A. niger transposon 1), is related to the Tc1/mariner group of DNA transposons. Ant1 is apparently present as a single copy in strain N402 of A. niger.  相似文献   

14.
15.
16.
A mariner transposable element from a lacewing.   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

17.
A putative defective transposable element has been identified in tobacco. This element has been found and characterised in two separate parts of the tobacco genome, specifically within the 3rd intron of the pollen-specific polygalacturonase gene (Npg1) and upstream of the endochitinase gene (Chn50). The element is ca. 0.4 kb in length and is bounded by conserved inverted repeats and putative target site duplications. It appears to fall into the category of non-autonomous transposable elements.  相似文献   

18.
Subfamily-specific LINE-1 PCR (SSL1-PCR) is the targeted amplification and cloning of defined subfamilies of LINE-1 elements and their flanking sequences. The targeting is accomplished by incorporating a subfamily-specific sequence difference at the 3 end of a LINE-1 PCR primer and pairing it with a primer to an anchor ligated within the flanking region. SSL1-PCR was demonstrated by targeting amplification of a Mus spretus-specific LINE-1 subfamily. The amplified fragments were cloned to make an SSL1-PCR library, which was found to be 100-fold enriched for the targeted elements. PCR primers were synthesized based on the sequence flanking the LINE-1 element of four different clones. Three of the clones were recovered from Mus spretus DNA. A fourth clone was recovered from a congenic mouse containing both Mus spretus and Mus domesticus DNA. Amplification between these flanking primers and LINE-1 PCR primers produced a product in Mus spretus and not in Mus domesticus. These dimorphisms were further verified to be due to insertion of Mus spretus-specific LINE-1 elements into Mus spretus DNA and not into Mus domesticus DNA.  相似文献   

19.
Retrotransposons are ubiquitous mobile genetic elements that have played a significant role in shaping eukaryotic genome evolution. The genome of the yeast Saccharomyces cerevisiae harbours five families of retrotransposons, Ty1-Ty5. With the publication of the S. cerevisiae genome sequence, for the first time a full genomic complement of retrotransposon sequences is available. Analysis of these sequences promises to yield insight into the nature of host--transposon coevolution. Evolutionary change in Ty elements depends on their replication and excision rates, which have been determined in the laboratory. Rates measured in the laboratory may differ from those that have operated over evolutionary time. Based on an analysis of sequence data for the Ty1, Ty2 and hybrid Ty1/2 families, we develop a novel 'genomic demography' model to estimate long-term transposition and excision rates and to estimate how long ago these elements entered the yeast genome. We find that rates of excision and transposition have averaged 7.2-8.7 x 10(-8) per generation over evolutionary time. Two separate models provide upper- and lower-bound estimates for the age of the system, suggesting that the first elements entered the genome between approximately 50 million and 250 million generations ago.  相似文献   

20.
Mating systems are thought to play an important role in determining the fate of genomic parasites such as transposable elements. This is supported by recent studies which indicate that asexual genomes may be structured very differently to those of sexual species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号