首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sensibility to single strand nuclease S1 of DNA from Avian leukemic cells infected with Avian Myeloblastosis virus (A.M.V.) has been studied. The resulting DNA fragments were analysed by electrophoresis on agarose gels. Fragments of discrete size appear after 10 min of digestion when less than 1 % of the DNA is rendered acid-soluble. These fragments appear as multiple of a monomeric unit and are similar to the fragments produced by micrococcal nuclease digestion. In addition integrated proviral AMV sequences were preferentially degraded by DNAase I but not by S1 nuclease.  相似文献   

2.
G Galili  A Levy    K M Jakob 《Nucleic acids research》1981,9(16):3991-4005
Discrete deoxyribonucleoproteins (DNPs) containing nascent and/or bulk DNA, were obtained by fractionating micrococcal nuclease digests of nuclei form 3H-thymidine pulse (15-20 sec) and 14C-thymidine long (16 h) labeled sea urchin embryos in polyacrylamide gels. One of these DNPs was shown to contain the micrococcal nuclease resistant 300 bp "large nascent DNA" described in Cell 14, 259-267, 1978. The bulk and nascent mononucleosome fractions provided evidence for the preferential digestion by micrococcal nuclease of nascent over bulk linker regions to yield mononucleosome cores with nascent DNA. DNAase I was used to probe whether any nascent DNA is in nucleosomes. Nascent as well as bulk single-stranded DNA fragments occurred in multiples of 10.4 bases with higher than random frequencies of certain fragment sizes (for instance 83 bases) as expected from a nucleosome structure. However, a striking background of nascent DNA between nascent DNA peaks was observed. This was eliminated by a pulse-chase treatment or by digestion of pulse-labeled nuclei with micrococcal nuclease together with DNAase I. One of several possible interpretations of these results suggests that a transient change in nucleosome structure may have created additional sites for the nicking of nascent DNA by DNAase I; the micrococcal nuclease sensitivity of the interpeak radioactivity suggest its origin from the linker region. Endogenous nuclease of sea urchin embryos cleaves chromatin DNA in a manner similar to that of DNAase I.  相似文献   

3.
4.
C Wu  P M Bingham  K J Livak  R Holmgren  S C Elgin 《Cell》1979,16(4):797-806
When the chromatin of Drosophila is examined by digestion with DNAase I or micrococcal nuclease, no general structural organization above the level of the nucleosome is revealed by the cleavage pattern. In contrast, the DNAase I cleavage pattern of specific regions of the Drosophila chromosome shows discrete bands with sizes ranging from a few kilobase pairs (kb) to more than 20 kb. Visualization of such higher order bands was achieved by the use of the Southern blotting technique. The DNAase I-cleaved fragments were transferred onto a nitrocellulose sheet after size fractionation by gel electrophoresis. Hybridization was then carried out with radioactively labeled cloned fragments of DNA from D. melanogaster. For the five different chromosomal regions examined, each gives a unique pattern of higher order bands on the autoradiogram; the patterns are different for different regions. Restriction enzyme cleavage of the fragments generated indicates that the preferential DNAase I cleavage sites in chromatin are position-specific. The chromosomal regions bounded by preferential DNAase I cleavage sites are referred to as supranucleosomal or higher order domains for purposes of discussion and analysis. The micrococcal nuclease cleavage pattern of chromatin at specific loci was also examined. In the one case studied in detail, this nuclease also cleaves at position-specific sites.  相似文献   

5.
DNA isolated from (a) liver chromatin digested in situ with endogenous Ca2+, Mg2+-dependent endonuclease, (b) prostate chromatin digested in situ with micrococcal nuclease or pancreatic DNAase I, and (c) isolated liver chromatin digested with micrococcal nuclease or pancreatic DNAase I has been analyzed electrophoretically on polyacrylamide gels. The electrophoretic patterns of DNA prepared from chromatin digested in situ with either endogenous endonuclease (liver nuclei) or micrococcal nuclease (prostate nuclei) are virtually identical. Each pattern consists of a series of discrete bands representing multiples of the smallest fragment of DNA 200 +/- 20 base pairs in length. The smallest DNA fragment (monomer) accumulates during prolonged digestion of chromatin in situ until it accounts for nearly all of the DNA on the gel; approx. 20% of the DNA of chromatin is rendered acid soluble during this period. Digestion of liver chromatin in situ in the presence of micrococcal nuclease results initially in the reduction of the size of the monomer from 200 to 170 base pairs of DNA and subsequently results in its conversion to as many as eight smaller fragments. The electrophoretic pattern obtained with DNA prepared from micrococcal nuclease digests of isolated liver chromatin is similar, but not identical, to that obtained with liver chromatin in situ. These preparations are more heterogeneous and contain DNA fragments smaller than 200 base pairs in length. These results suggest that not all of the chromatin isolated from liver nuclei retains its native structure. In contrast to endogenous endonuclease and micrococcal nuclease digests of chromatin, pancreatic DNAase I digests of isolated chromatin and of chromatin in situ consist of an extremely heterogeneous population of DNA fragments which migrates as a continuum on gels. A similar electrophoretic pattern is obtained with purified DNA digested by micrococcal nuclease. The presence of spermine (0.15 mM) and spermidine (0.5 mM) in preparative and incubation buffers decreases the rate of digestion of chromatin by endogenous endonuclease in situ approx. 10-fold, without affecting the size of the resulting DNA fragments. The rates of production of the smallest DNA fragments, monomer, dimer, and trimer, are nearly identical when high molecular weight DNA is present in excess, indicating that all of the chromatin multimers are equally susceptible to endogenous endonuclease. These observations points out the effects of various experimental conditions on the digestion of chromatin by nucleases.  相似文献   

6.
HeLa cells depleted of polyamines by treatment with alpha-difluoromethylornithine (DFMO), methylglyoxal bis(guanylhydrazone) (MGBG) or a combination of the two, were examined for sensitivity to micrococcal nuclease, DNAase I and DNAase II. The degrees of chromatin accessibility to DNAase I and II appeared enhanced somewhat in all three treatment groups, and the released digestion products differed from those in non-depleted cells. DNA released from MGBG- and DFMO/MGBG-treated cells by DNAase II digestion was enriched 4-7-fold for Mg2+-soluble species relative to controls. DNA released by micrococcal nuclease digestion from all three treatment groups was characterized as consisting of higher-order nucleosomal structure than was DNA released from untreated cells. At least some of the altered chromatin properties were abolished by a brief treatment of cells with polyamines, notably spermine. These studies provide the first demonstration in vivo of altered chromatin structure in cells treated with inhibitors of polyamine biosynthesis.  相似文献   

7.
Isolated nucleoli from exponentially growing microplasmodia of Physarum polycephalum were digested with micrococcal nuclease or DNAase I, or were photoreacted with trimethyl psoralen. In the coding region for the precursor of the ribosomal RNA, micrococcal nuclease and DNAase I digestions show predominantly a smear, and treatment with psoralen leads to a fairly continuous crosslinking of the DNA. All three assays are compatible with the absence of a typical nucleosomal array in most of the gene copies. In contrast, in the central non-transcribed spacer, except in the immediate 5'-flanking region, micrococcal nuclease and DNAase I digestions yield fragments that are multiples of a basic repeat, compatible with a nucleosomal packing of this region. The crosslinking pattern with psoralen confirms this conclusion. In addition, there are three sites over 400 base-pairs long that are inaccessible for psoralen crosslinking. Two of these sites have been mapped to the putative origins of replication. In the terminal non-transcribed spacer, except in the immediate 3'-flanking region, digestions with micrococcal nuclease and DNAase I give a smeared repeat. The crosslinking pattern after treatment with psoralen suggests that this region is packed in nucleosomes, except for about 900 base-pairs constituting the telomere regions of the linear extrachromosomal palindromic rDNA. Micrococcal nuclease digestion of the immediate 5'-flanking region shows a complete absence of any nucleosomal repeat, but digestion with DNAase I leads to a faint ten base-pair repeat. In contrast, in the 3'-flanking regions both nuclease assays indicate a chromatin structure similar to the coding region. Both flanking regions are unusual with respect to psoralen crosslinking, in that crosslinking is reduced both in chromatin and deproteinized DNA. On the basis of the known sequence-dependent psoralen crosslinking and the established sequences in these regions, crosslinking should be expected to occur. However, it does not and we therefore propose the presence of an unusual DNA conformation in these regions.  相似文献   

8.
The positions and relative frequencies of the primary cleavages made by micrococcal nuclease on the DNA of nucleosome core particles have been found by fractionating the double-stranded products of digestion and examining their single-stranded compositions. This approach overcomes the problems caused by secondary events such as the exonucleolytic and pseudo-double-stranded actions of the nuclease and, combined with the use of high resolution gel electrophoresis, enables the cutting site positions to be determined with a higher precision than has been achieved hitherto. The micrococcal nuclease primary cleavage sites lie close (on average, within 0.5 nucleotide) to those previously determined by Lutter (1981) for the nucleases DNase I and DNase II. These similarities show that the accessible regions are the same for all three nucleases, the cleavage sites being dictated by the structure of the nucleosome core. The differences in the final products of the digestion are explained in terms of secondary cleavage events of micrococcal nuclease. While the strongly protected regions of the nucleosome core DNA are common to all three nucleases, there are differences in the relative degrees of cutting at the more exposed sites characteristic of the particular enzyme. In particular, micrococcal nuclease shows a marked polarity in the 3'-5' direction in the cutting rates as plotted along a single strand of the nucleosomal DNA. This is explained in terms of the three-dimensional structure of the nucleosome where, in any accessible region of the double helix, the innermost strand is shielded by the outermost strand on the one side and the histone core on the other. The final part of the paper is concerned with the preference of micrococcal nuclease to cleave at (A,T) sequences in chromatin.  相似文献   

9.
G Vidali  L C Boffa  V G Allfrey 《Cell》1977,12(2):409-415
Duck erythrocyte chromatin has been treated with DNAase 1 under conditions that are known to digest selectively the structural genes coding for globin mRNAs. This limited digestion releases specific sets of nonhistone chromosomal proteins that are not preferentially released during limited digestion with micrococcal nuclease, which does not selectively attack the globin sequences. Analysis of nucleosome monomer and multimer peaks separated on sucrose gradients after limited digestion with micrococcal nuclease shows that the proteins which are released by DNAase 1 digestion remain associated with the chromatin subunits and can be removed by extraction in 0.5 M NaCl. These proteins are tentatively identified as members of the high mobility group (HMG) proteins (originally described by Goodwin, Sanders and Johns, 1973) in terms of their extractability, electrophoretic characteristics and amino acid composition.  相似文献   

10.
DNAase II has been shown to cleave condensed mouse liver chromatin at 100-bp2 intervals while chromatin in the extended form is cleaved at 200-bp intervals (Altenburger et al., 1976). Evidence is presented here that DNA digestion patterns of a half-nucleosomal periodicity are also obtained upon DNAase II digestion of chicken erythrocyte nuclei and yeast nuclei, both of which differ in their repeat lengths (210 and 165 bp) from mouse liver chromatin. In the digestion of mouse liver nuclei a shift from the 100-bp to the 200-bp cleavage mode takes place when the concentration of monovalent cations present during digestion is decreased below 1 mM. When soluble chromatin prepared by micrococcal nuclease is digested with DNAase II the same type of shift occurs, albeit at higher ionic strength.In order to map the positions of the DNAase II cleavage sites on the DNA relative to the positions of the nucleosome cores, the susceptibility of DNAase II-derived DNA termini to exonuclease III was investigated. In addition, oligonucleosome fractions from HaeIII and micrococcal nuclease digests were end-labelled with polynucleotide kinase and digested with DNAase II under conditions leading to 100 and 200-bp digestion patterns. Analysis of the chain lengths of the resulting radioactively labelled fragments together with the results of the exonuclease assay allow the following conclusions. In the 200-bp digestion mode, DNAase II cleaves exclusively in the internucleosomal linker region. Also in the 100-bp mode cleavage occurs initially in the linker region. Subsequently, DNAase II cleaves at intranucleosomal locations, which are not, however, in the centre of the nucleosome but instead around positions 20 and 125 of the DNA associated with the nucleosome core. At late stages of digestion intranucleosomal cuts predominate and linkers that are still intact are largely resistant to DNAase II due to interactions between adjacent nucleosomes. These findings offer an explanation for the sensitivity of DNAase II to the higher-order structure of chromatin.  相似文献   

11.
Responses of mammalian metaphase chromosomes to endonuclease digestion   总被引:4,自引:0,他引:4  
Sahasrabuddhe  C. G.  Pathak  S.  Hsu  T. C. 《Chromosoma》1978,69(3):331-338
Digestion of fixed metaphase chromosomes by endonucleases (micrococcal nuclease and DNase II) under optimal digestion conditions followed by Giemsa staining produces sharp banding patterns identical to G-bands. In 3H-thymidine labeled, synchronized metaphase cells of the chinese hamster (CHO line), the band induction is accompanied by the removal of DNA. The single strand specific nuclease S1 and DNase I do not produce such banding patterns.  相似文献   

12.
13.
N. Ronald Morris 《Cell》1976,8(3):357-363
The structure of chromatin from Aspergillus nidulans was studied using micrococcal nuclease and DNAase I. Limited digestion with micrococcal nuclease revealed a nucleosomal repeat of 154 base pairs for Aspergillus and 198 base pairs for rat liver. With more extensive digestion, both types of chromatin gave a similar quasi-limit product with a prominent fragment at 140 base pairs. The similarity of the two limit digests suggests that the structure of the 140 base pair nucleosome core is conserved. This implies that the difference in nucleosome repeat lengths between Aspergillus and rat liver is caused by a difference in the length of the DNA between two nucleosome cores. Digestion of Aspergillus chromatin with DNAase I produced a pattern of single-stranded fragments at intervals of 10 bases which was similar to that produced from rat liver chromatin.  相似文献   

14.
M Ryoji  A Worcel 《Cell》1985,40(4):923-932
DNA injected into germinal vesicles of Xenopus oocytes is assembled into two distinct types of minichromosomes. One type is soluble and behaves like conventional nucleosomal chromatin. The other type is insoluble, is sensitive to DNAase I and to micrococcal nuclease, lacks a canonical nucleosome repeat, and generates a half-nucleosome size limit digest with micrococcal nuclease. We suggest that these peculiar minichromosomes may be the ones that display the unconstrained, "dynamic" DNA supercoils in the living oocyte.  相似文献   

15.
There are two types of DNA-nuclear matrix interactions in animal cells as revealed by the release of DNA from isolated nuclei by three successive gradients: NaCl, LiCl-urea and temperature. Nuclei were treated with dissociating agents while being adsorbed on the Celite columns. "Weak" DNA-matrix interactions which dissociate in 1.5 M LiCl-3 M urea at 2 degrees appear to be sensitive to ethidium bromide and resistant to exogeneous nucleases (DNAase I, DNAase II and micrococcal nuclease), to DNA-damaging agents, including alkylators and gamma-irradiation, and also to psoralen-induced cross-links. "Strong" DNA-matrix interactions proved to be very different. They dissociate in 4 M LiCl-8 M urea at approximately 90 degrees, are very sensitive to DNAase I and other nucleases, slightly sensitive to chemicals and irradiation at doses stimulating single-stranded DNA breaks, but resistant to ethidium bromide. DNA strand separation seems to be necessary prerequisite for DNA release from its "strong" complex with nuclear matrix. A model for the topological link between DNA and the nuclear matrix involved in DNA replication complex is discussed.  相似文献   

16.
The use of micrococcal nuclease as a probe for drug-binding sites on DNA   总被引:8,自引:0,他引:8  
The cutting pattern produced by micrococcal nuclease on three DNA fragments has been determined in the absence and presence of various DNA-binding drugs. The enzyme itself cuts almost exclusively at pA and pT bonds, showing a greater activity at (A-T)n than in homopolymeric runs of A and T. Each drug produces distinct changes in the cleavage pattern. The protected regions can not be pinpointed with sufficient precision to assess the exact drug-binding sites on account of the sequence selectivity of the enzyme, although where a direct comparison is possible these include most of those seen as DNAase I footprints. The enzyme is most useful for assessing the selectivity of drugs which bind to AT-rich regions. Several drugs protect the DNA from micrococcal nuclease attack in regions which do not contain their acknowledged best binding sites. It appears that micrococcal nuclease is sensitive to the existence of secondary drug-binding sites which are not evident with other footprinting techniques.  相似文献   

17.
18.
A number of minor, previously unidentified GC-rich mouse DNA families have been observed in CsCl gradients. Since these DNA families are found in the DNA of mouse nuclei which is most resistant to both micrococcal nuclease and DNAase I, they must occur in highly condensed chromatin. Fractionation of high molecular weight nuclease digested DNA by sequential polyethylene glycol (PEG) precipitation demonstrates differential enrichment of these DNA families implying a differential condensation of these DNA fractions in chromatin.  相似文献   

19.
20.
The rDNA in Dictyostelium discoideum is organized in linear, extrachromosomal, palindromic dimers of approximately 88 X 10(3) bases in length. The dimers are repeated about 90 times per haploid genome. Using indirect end-labeling, we have mapped micrococcal nuclease and DNAase I-sensitive sites in the chromatin near the rDNA telomeres. This region is 3' to the 36 S rRNA coding region and contains a single 5 S rRNA cistron but is primarily non-coding. We have observed somewhat irregularly spaced but specific phasing of nuclease-sensitive sites relative to the underlying DNA sequence. Comparison of the sites in chromatin with those in naked DNA reveals an unusual and striking pattern: the sites in naked DNA that are attacked most readily by both nucleases, presumably because of the specificity of the nucleases for certain sequences or physical characteristics of the DNA, appear to be the same sites that are most protected in chromatin. This pattern extends over most of a 10(4) base region, from the sequence immediately distal to the 36 S rRNA coding region and extending to the terminus. Although much of the sequence-specific phasing is irregularly spaced, salt extraction data are consistent with the presence of nucleosomes. In addition, phasing in the terminal region may be directed partially by proteins that do not bind DNA as tightly as do core histones. We present a model for phasing in spacer regions in which the sequence preferences of nucleases such as micrococcal nuclease and DNAase I may be useful tools in predicting nucleosome placement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号