首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The autolysis of chlamydospore-like cells in Phanerochaete chrysosporium immobilized in polyurethane foam correlated with the production of manganese peroxidase (MnP). The maximum specific activity of MnP was 1055 U g dry mycelium–1 in the immobilized culture, compared with 260 U g dry mycelium–1 in the submerged culture. Scattered mycelial pellets were formed in the immobilized culture in which almost all of the chlamydospore-like cells were subject to autolysis. However, highly crowded pellets were formed in the free culture, in which only the chlamydospore-like cells in the exterior were subject to autolysis. We propose that the enhanced production of MnP in immobilized cultures of P. chrysosporium is due to increased autolysis of the chlamydospore-like cells.  相似文献   

2.
This is the first demonstration of process scale-up of a membrane gradostat reactor for continuous enzyme production using Phanerochaete chrysosporium ME446. The fungus was immobilised by reverse filtration on to externally unskinned, ultrafiltration capillary membranes and then nutrient gradients were induced across the biofilm. A 10-fold scale-up from a single capillary bioreactor to a 2.4 l multi-capillary unit resulted in a 7-fold increase in enzyme productivity with a peak at 209 U l–1 d–1. Subsequent scale effects on the spore distribution, continuous manganese peroxidase production profile and biofilm development are discussed.  相似文献   

3.
Phanerochaete chrysosporium cells were immobilized on the sintered porous glass support. Such a biocatalizer was used as a bed of the enzymatic reactor system for the continuous production of lignin peroxidase. From the after culture fluid the lignin peroxidase enzymatic activity was recovered and purified applying anion exchangers. Additionally, some physico-chemical properties of lignin peroxidases were determined.  相似文献   

4.
Summary A blue-green algae, Anabaena N-7363, was immobilized in 2% agar gel. The hydrogen productivity of the immobilized algae was three times higher than that of free algae. The maximum hydrogen production rate by the immobilized blue-green algae was 0.52 moles h–1 g–1 (of wet gel) in the medium without nitrogen sources under illumination (10,000 lux). The oxygen evolved was then removed by a reactor containing aerobic bacteria. A photo-current of 15–20 mA was continuously produced for 7 days by the photochemical fuel cell system consisting of the immobilized Anabaena reactor, the oxygen-removing reactor and the hydrogen-oxygen fuel cell. The conversion ratio of hydrogen to current was from 80% to 100%.  相似文献   

5.
Continuous production of lignin-degrading enzymes by Bjerkandera adusta immobilized on polyurethane foam gave maximum activities of 220 U lignin peroxidase ml–1, 150 U manganese peroxidase ml–1, 50 U laccase ml–1 and 6.2 U protease ml–1 at the retention time of 24 h for 60 days. Protease secretion destabilized the produced lignin peroxidase, manganese peroxidase and laccase.  相似文献   

6.
The production of manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) by the fungus Phanerochaete chrysosporium (ATCC 24725) in a new bioreactor, the Immersion Bioreactor, which grows cells under solid-state conditions, was studied. Maximum MnP and LiP activities were 987 U l–1 and 356 U l–1, respectively. The polymeric dye, Poly R-478, was degraded at 2.4 mg l–1 min–1 using the extracellular culture filtrate.  相似文献   

7.
Summary Direct alcoholic fermentation of dextrin or soluble starch with selected amylolytic yeasts was studied in both batch and immobilized cell systems. In batch fermentations, Saccharomyces diastaticus was capable of fermenting high dextrin concentrations much more efficiently than Schwanniomyces castellii. From 200 g·l–1 of dextrin S. diastaticus produced 77 g·l–1 of ethanol (75% conversion efficiency). The conversion efficiency decreased to 59% but a higher final ethanol concentration of 120 g·l–1 was obtained with a medium containing 400 g·l–1 of dextrin. With a mixed culture of S. diastaticus and Schw. castellii 136 g·l–1 of ethanol was produced from 400 g·l–1 of dextrin (67% conversion efficiency). S. diastaticus cells attached well to polyurethane foam cubes and a S. diastaticus immobilized cell reactor produced 69 g·l–1 of ethanol from 200 g·l–1 of dextrin, corresponding to an ethanol productivity of 7.6g·l–1·h–1. The effluent from a two-stage immobilized cell reactor with S. diastaticus and Endomycopsis fibuligera contained 70 g·l–1 and 80 g·l–1 of ethanol using initial dextrin concentrations of 200 and 250 g·l–1 respectively. The corresponding values for ethanol productivity were 12.7 and 9.6 g·l–1·h–1. The productivity of the immobilized cell systems was higher than for the batch systems, but much lower than for glucose fermentation.  相似文献   

8.
Summary Degradation of 3,4-dichloroaniline (34DCA) in aqueous by undefined cultures of free and immobilized cells was examined. Batch cultures of freely suspended cells and continuous degradation in a packed-bed reactor were studied using both synthetically concocted and industrially produced waste-waters. 34DCA was found to be degraded with a concomitant evolution of chloride ions into the bulk medium. The [acked bed reactor with biomass immobilized on celite diatomaceous earth was found to be capable of degrading over 98% of the 34DCA present in a synthetically concocted inlet stream at a concentration of 250 mg l–1. Residence times of less than 4 h were employed, giving an overall volumetric degradation rate for the packed bed of 90 mg l–1 h–1. The industrially produced wastewater contained, in addition to 34DCA, aniline, 4-chloroaniline, 2,3-dichloroaniline (23DCA) and 3,4-dichloronitrobenzene. The biomass enriched on the synthetic 34DCA waste-water was found to be capable of degrading these compounds in addition to 34DCA with the exception of 23DCA. 34DCA degradation efficiencies of over 95% were obtained for the industrial waste-water at reactor residence times of 4.6 h, giving volumetric degradation rates of 24 mg l–1 h–1. Offprint requests to: A. G. Livingston  相似文献   

9.
Summary Lignin peroxidase production by Phanerochaete chrysosporium, under shaking conditions in an N-limited glycerol medium supplied with solid manganese(IV)oxide, increased to a high level. It was shown that the high enzymatic level was due to a higher specific enzymatic activity compared to corresponding –MnO2 cultures when measurements were based upon the haem component (A 409). The superiority of cultivation in the presence of MnO2 was reflected by the longevity of the enzymes produced in the culture fluid. By tracing enzymatic activities (toward veratryl alcohol and phenol red) as a function of time of incubation, a higher specific activity of single peroxidases from +MnO2 cultures was determined compared to corresponding –MnO2 cultures. Different patterns of peroxidases were found in glucose and glycerol cultures and the problems of classifying peroxidases are discussed. The effect of veratryl alcohol on peroxidases was compared with that of MmO2. Even at higher levels of enzymatic activity an additional influence of MnO2 on the stabilization of the enzymes was observed. By applying homoveratryl amine instead of veratryl alcohol the activity of the peroxidases in agitated +MnO2 cultures exceeded 2000 units/l.  相似文献   

10.
Summary Mead was produced by immobilized cells of Hansenula anomala in calcium alginate gels. The immobilized cell beads of 3 mm diameter packed in column reactors of dimensions 2.2x60, 4x40 and 8x80 cm, produced mead containing maximum concentrations of ethanol and ethyl acetate of 70 g/l and 730 mg/l, respectively at a dilution rate of 0.1 h–1. The maximum alcohol productivity achieved was 23.1 g/l·h at a dilution rate of 0.33 h–1. With intermittent regenerations of the cells the reactor operated continuously for 110 days. This process enables the quick production of matured mead by a single culture and the elimination of the traditionally used long aging periods.  相似文献   

11.
Summary Yeast-like cells ofAureobasidium pullulans were immobilized in Ca-alginate gel beads and employed for continuous production of glucoamylase in a fluidized-bed reactor (250 ml working volume). After an activation time of 48 h, to allow the in situ germination of the fungal blastospores, the reactor was operated continuously for over 150 h. A steady state enzyme concentration of 1.2–1.3 U ml–1 of glucoamylase activity and an enzyme volumetric productivity of ca. 130 U ml–1 h–1 were obtained at a medium flow rate of 26 ml h–1. Enzyme activity and volumetric productivity were influenced by fermentation conditions such as inoculum size and airflow rate.  相似文献   

12.
Summary Citric acid was produced with immobilized Yarrowia lipolytica yeast in repeated batch-shake-flask and air-lift fermentations. In active and passive immobilization methods calcium alginate, -carrageenan, polyurethane gel, nylon web and polyurethane foams were tested as carriers in repeated-batch fermentations. The highest citric acid productivity of 155 mg l–1 h–1 was reached with alginate-bead-immobilized cells in the first batch. A decrease in bead diameter from 5–6 mm to 2–3 mm increased the volumetric citric acid productivity threefold. In an air-lift bioreactor the highest citric acid productivity of 120 mg l–1 h–1 with a product concentration of 16.4 g l–1 was obtained with cells immobilized in -carrageenan beads. Offprint requests to: H. Kautola  相似文献   

13.
Summary The ligninolytic enzymes ofPhlebia radiata were produced in static conditions earlier developed forPhanerochaete chrysosporium. The production pattern of lignin peroxidases resembled that ofP. chrysosporium. The extracellular proteins ofPhlebia radiata were separated by isoelectric focusing. Four proteins with acidic isoelectric points (4.15) were detected by peroxidase staining. The peroxidases ofP. radiata reacted with antibodies produced against a peroxidase ofPhanerochaete chrysosporium and vice versa. Thus the lignin peroxidases of the two fungi have major similarities despite slight differences in their isoelectric points and molecular weights. Veratryl alcohol was produced by both fungi and degraded to veratraldehyde, two lactones and a quinone by the ligninolytic cultures.  相似文献   

14.
Investigating optimal conditions for lignin-degrading peroxidases production by Phanerochaete chrysosporium (P. chrysosporium) has been a topic for numerous researches. The capability of P. chrysosporium for producing lignin peroxidases (LiPs) and manganese peroxidases (MnPs) makes it a model organism of lignin-degrading enzymes production. Focusing on compiling and identifying the factors that affect LiP and MnP production by P. chrysosporium, this critical review summarized the main findings of about 200 related research articles. The major difficulty in using this organism for enzyme production is the instability of its productivity. This is largely due to the poor understanding of the regulatory mechanisms of P. chrysosporium responding to different nutrient sources in the culture medium, such as metal elements, detergents, lignin materials, etc. In addition to presenting the major conclusions and gaps of the current knowledge on lignin-degrading peroxidases production by P. chrysosporium, this review has also suggested further work, such as correlating the overexpression of the intra and extracellular proteins to the nutrients and other culture conditions to discover the regulatory cascade in the lignin-degrading peroxidases production process, which may contribute to the creation of improved P. chrysosporium strains leading to stable enzyme production.  相似文献   

15.
Maximum activities of manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) in free cultures of Phanerochaete chrysosporium (ATCC 24725) were 258 U l–1 and 103 U l–1, respectively, in an airlift bioreactor. Immobilisation of the fungus on an inert carrier as well as several design modifications of the bioreactor employed gave MnP activities around 500–600 U l–1 during 9 days' operation. The continuous operation of the latter led to MnP and LiP activities about 140 U l–1 and 100 U l–1, respectively, for two months, without operational problems. Furthermore, the extracellular liquid secreted decolourised the polymeric dye Poly R-478 about 56%.  相似文献   

16.
Summary Growth of Propionibacterium acidi-propionici was studied on lactose as substrate and in acid whey permeate in a three-electrode poised-potential system with cobalt sepulchrate as artificial electron donor. In batch culture experiments in a stirred-tank reactor the substrate was fermented completely to propionic acid up to 6.5 g 1–1 lactose in a supplemented whey permeate medium. No acetic acid was produced during the growth of P. acidi-propionici. An electron flow of 80–100 mA was obtained and the electron balance was 101%. In continuously growing cultures with 3 g 1–1 of lactose as the substrate, propionate was formed as the only fermentation product up to a dilution rate (D) of 0.04 h–1. With D>0.04 h–1 the bacteria immobilized on the working electrode surface. It was examined whether an electron transfer occurred between the platinum working electrode and the immobilized cells. Correspondence to: W. Trösch  相似文献   

17.
Continuous ethanol fermentation by immobilized whole cells ofZymomonas mobilis was investigated in an expanded bed bioreactor and in a continuous stirred tank reactor at glucose concentrations of 100, 150 and 200 g L–1. The effect of different dilution rates on ethanol production by immobilized whole cells ofZymomonas mobilis was studied in both reactors. The maximum ethanol productivity attained was 21 g L–1 h–1 at a dilution rate of 0.36 h–1 with 150 g glucose L–1 in the continuous expanded bed bioreactor. The conversion of glucose to ethanol was independent of the glucose concentration in both reactors.  相似文献   

18.
A new system to produce lignin peroxidase (LiP) continuously by Phanerochaete chrysosporium is described. A fixed-bed bioreactor with a pulsing device was used as the optimal bioreactor configuration. Addition of veratryl alcohol (1 mM), tryptophan (1 mM), no Mn2+ addition, low glucose addition rate (60–70 mg l–1 h) and an atmosphere of O2 gave maximum LiP activities of 700 U l–1, which are higher than those previously reported.  相似文献   

19.
Continuous production of isomalto-oligosaccharides from maltose syrup by the permeabilized cells ofAureobasidium pullulans immobilized into calcium alginate gel was studied using a column reactor. The immobilized cell column maintained its full activity over 45 days when the reactor was operated at a velocity of 0.1 h–1 at 50°C using 60%(w/v) maltose syrup as a substrate, and the maximum productivity achieved was around 60 g/1h.  相似文献   

20.
The involvement of extracellular oxidases in biotransformation of low-rank coal was assessed by correlating the ability of nine white-rot and brown-rot fungi to alter macromolecular material in alkali-solubilised brown coal with the spectrum of oxidases they produce when grown on low-nitrogen medium. The coal fraction used was that soluble at 3.0?pH?6.0 (SWC6 coal). In 15-ml cultures, Gloeophyllum trabeum, Lentinus lepideus and Trametes versicolor produced little or no lignin peroxidase, manganese (Mn) peroxidase or laccase activity and caused no change to SWC6 coal. Ganoderma applanatum and Pycnoporus cinnabarinus also produced no detectable lignin or Mn peroxidases or laccase yet increased the absorbance at 400?nm of SWC6 coal. G. applanatum, which produced veratryl alcohol oxidase, also increased the modal apparent molecular mass. SWC6 coal exposed to Merulius tremellosus and Perenniporia tephropora, which secreted Mn peroxidases and laccase and Phanerochaete chrysosporium, which produced Mn and lignin peroxidases was polymerised but had unchanged or decreased absorbance. In the case of both P. chrysosporium and M. tremellosus, polymerisation of SWC6 coal was most extensive, leading to the formation of a complex insoluble in 100?mM NaOH. Rigidoporus ulmarius, which produced only laccase, both polymerised and reduced the A 400 of SWC6 coal. P. chrysosporium, M. tremellosus and P. tephropora grown in 10-ml cultures produced a spectrum of oxidases similar to that in 15-ml cultures but, in each case, caused more extensive loss of A 400, and P. chrysosporium depolymerised SWC6 coal. It is concluded that the extracellular oxidases of white-rot fungi can transform low-rank coal macromolecules and that increased oxygen availability in the shallower 10-ml cultures favours catabolism over polymerisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号