首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The effect of various basal salts media, containing different nitrogen levels on in vitro adventitious shoot regeneration from leaf explants of Louise Bonne Panachee and Seckel pear (Pyrus communis L.) were investigated. Among the different basal salt formulae tested, Nitsch (1969) gave significantly better regeneration in most of the experiments. Shoot regeneration was altered with different NH4 +-N/NO3 -N ratios. The best regeneration was obtained when NH4 +:NO3 was either 1:2 or 1:3 regardless of overall N concentration. In addition, these data show that NH4 + was essential for adventitious shoot regeneration from pear leaf explants on White's (1943) medium.  相似文献   

2.
Panigatti  M. C.  Maine  M. A. 《Hydrobiologia》2003,492(1-3):151-157
Water – Salvinia herzogii – sediment systems were exposed to different phosphorus and nitrogen combinations in outdoor experiments. The aim was to estimate the amounts of P immobilized in macrophytes and sediments, as well as to elucidate whether or not the presence of N affects the retention of P. The following components were added: o-P, o-P + NH4 +, o-P + NO3 + NH4 +, o-P + NO3 . The concentration of nutrients was periodically determined throughout the experiment (28 days). The concentrations of P and N in plant tissues and sediments were determined at the beginning and the end of the experiment. Sequential extractions of P-fractions in sediment were performed using the EDTA method (Golterman, 1996). The removal efficiency of P in water was 95–99%. The removal of NH4 + (97–98%) was more effective than that of NO3 (44–86%). The presence of nitrogen species increased the removal velocity of o-P from water, NH4 + was the most effective species. Sediments not only had higher P removal rates than macrophytes but, in the control treatment without macrophytes, they reached the values obtained by macrophytes plus sediments in the other treatments. The adsorption of P takes place at the surface layer of the sediment (1 cm). Most of the P incorporated into the sediment during the experiment was sorbed by the fraction Fe(OOH)P. The addition of nutrients to water modified the leaves/lacinias weight ratio.  相似文献   

3.
In many forests of Europe and north-eastern North America elevated N deposition has opened the forest N cycle, resulting in NO3 ? leaching. On the other hand, despite this elevated N deposition, the dominant fate of NO3 ? and NH4 + in some of these forests is biotic or abiotic immobilization in the soil organic matter pool, preventing N losses. The environmental properties controlling mineral N immobilization and the variation and extent of mineral N immobilization in forest soils are not yet fully understood. In this study we investigated a temperate mixed deciduous forest, which is subjected to an average N deposition of 36.5 kg N ha?1 yr?1, but at the same time shows low NO3 ? concentrations in the groundwater. The aim of this study was to investigate whether the turnover rate of the mineral N pool could explain these low N leaching losses. A laboratory 15N pool dilution experiment was conducted to study gross and net N mineralization and nitrification and mineral N immobilization in the organic and uppermost (0–10 cm) mineral layer of the forest soil. Two locations, one at the forest edge (GE) and another one 145 m inside the forest (GF1), were selected. In the organic layers of GE and GF1, the gross N mineralization averaged 10.9 and 11.1 mg N kg?1 d?1, the net N mineralization averaged 6.1 and 6.8 mg N kg?1 d?1 and NH4 + immobilization rates averaged 3.8 and 3.6 mg N kg?1 d?1. In the organic layer of GE and GF1, the average gross nitrification was 3.8 and 4.6 mg N kg?1 d?1, the average net nitrification was ?25.2 and ?31.3 mg N kg?1 d?1 and the NO3 ? immobilization rates averaged 29.0 and 35.9 mg N kg?1 d?1. For the mineral (0–10 cm) layer the same trend could be observed, but the N transformation rates were much lower for the NH4 + pool and not significantly different from zero for the NO3 ? pool. Except for the turnover of the NH4 + pool in the mineral layer, no significant differences were observed between location GE and GF1. The ratio of NH4 + immobilization to gross N mineralization, gross N mineralization to gross nitrification, and NO3 ? immobilisation to gross nitrification led to the following observations. The NH4 + pool of the forest soil was controlled by N mineralization and NO3 ? immobilization was importantly controlling the forest NO3 ? pool. Therefore it was concluded that this process is most probably responsible for the limited NO3 ? leaching from the forest ecosystem, despite the chronically high N deposition rates.  相似文献   

4.
The results of the experiments discussed here present changes in the chemical composition of xylem sap of tomato seedlings cultivated in hydroponics on media containing 5 mmol HCO3 and an N-source given as NO3 , NH4 + or these two forms in different proportions. The occurrence of free NH4 + in the xylem sap of NH4 +-seedlings and in NO3 -seedlings indicates that the process of N-assimilation was not only confined to roots. The application of HCO3 to the medium effected a decrease in the concentration of NH4 + in the xylem sap of NH4 +-seedlings, having no effect on changes in the concentration of NO3 or NH4 + in NO3 -seedlings. Malate, citrate, fumarate, and succinate were identified in the xylem sap. The concentration of carboxylates in NO3 -seedlings exceeded by about 50% that recorded in NH4 +-seedlings. The highest concentration of malate constituting from 80% to 93.5% of this fraction, was determined in this group of compounds. The enrichment of the medium with HCO3 ions induced an increase in the content of carboxylates, chiefly of malate. In these experimental conditions an increase in the malate concentration in the xylem sap of NO3 and NH4 +-seedlings reached relative values of 100% and 36%, respectively. The total concentration of amides and amino acids was about 2.6 times higher in the xylem sap of NH4 +-seedlings than in NO3 -seedlings. Amide glutamine was the main component of this fraction in xylem sap and its total concentration was about 3.3 times higher in NH4 +-seedlings than that determined in NO3 -seedlings. Glutamine, glutamate, aspargine, and aspartate constituted from 69% to 77% of this fraction. The concentration of the remaining amino acids varied from 0.6% to 7%. The enrichment of the medium with HCO3  ions also effected an increase in the concentration of amides and amino acids in the xylem sap by about 17% and 56% in the case of NO3 and NH4 +-seedlings, respectively, in comparison with the respective controls (without HCO3 ). Abbreviations: DAG – days after germination; DIC – dissolved inorganic carbon; GOGAT – glutamine:2-oxoglutarate aminotransferase; GS – glutamine synthetase; PAR – photosynthetically active radiation; PEPc – phosphoenolpyruvate carboxylase  相似文献   

5.
After growth for 17 to 36 days on nutrient solutions with NH4NO3 as nitrogen source (pH 4.2) dry matter of sorghum genotype SC0283 was much less affected by Al (1.5 and 3.0 ppm) than that of genotype NB9040. In the absence of Al both cultivars released protons into the nutrient solution as a result of an excess of cationic nutrients taken up. When Al was present, this proton efflux per unit dry weight increased drastically, especially with the sensitive genotype NB9040. Chemical analysis of plant material and continuous analyses of NO 3 and NH 4 + in the nutrient solution indicated, that the Al-induced shift in H+-balance of both genotypes could almost completely be attributed to a decreased NO 3 /NH 4 + uptake ratio. In vivo nitrate reductase activity (NRA) was reduced in the shoot of NB9040 and to a lesser degree in SC0283. Al-induced decrease in NRA was accompanied by similar percentual decreases in NO 3 tissue concentrations. Therefore this decrease is interpreted as being indirect,i.e., the consequence of the reduced NO 3 uptake of the plants. A direct repression of NRA by Al seems also unlikely because nitrate reductase activity of the roots (where cellular Al-concentrations should be higher than in shoots) was not affected in Al-treated plants of either genotype.  相似文献   

6.
We investigated the effect of mineral nitrogen forms on transfer of nitrogen (N) and zinc (Zn) from attached compartments to rhodes grass (Chloris gayana) colonised with arbuscular mycorrhizal fungi (AMF). After being pre-cultivated in substrates with adequate nutrient supply and either AMF inoculated (+AM) or left non-inoculated (?AM), rhodes grass was positioned adjacent to an outer compartment holding a similar substrate but applied with labelled nitrogen (15N) either as ammonium (NH4 +) or nitrate (NO3 ?), and a high supply of Zn (150 mg kg?1 DS). Plant roots together with fungal mycelium were either allowed to explore the outer compartment (with root access) or only mycorrhizal hyphae were allowed (without root access). Within each access treatment, biomasses of rhodes grass were not significantly affected by AMF inoculation or N form. AMF contribution to plant 15N uptake was about double in NH4 + compared with NO3 ?-supplied treatments while the mycorrhizal influence on plant Zn uptake was insignificant. Without root access, the shoot 15N/Zn concentration ratio was up to ten-fold higher in +AM than –AM treatments and this ratio increase was clearly more pronounced in NH4 + than NO3 ?-supplied treatments. In conclusion, rhodes grass in symbiosis with the tested AMF acquired more N when supplied with ammonium. Moreover, there is clear indication that although the AMF have transported both nutrients (N and Zn), N was preferentially transferred as compared to Zn. We confirmed that, while rhodes grass is not able to prevent excessive Zn uptake via roots under conditions of high Zn, mycorrhiza is able to avoid excessive Zn supply to the host plant when the fungus alone has access to contaminated patches.  相似文献   

7.
Guaranteeing high crop yields while reducing environmental impacts of nitrogen fertilizer use due to associated losses of N2O emissions and nitrate (NO3 ?) leaching is a key challenge in the context of sustainable intensification of crop production. However, few field data sets are available that explore the effect of different forms of N management on yields as well as on N losses in the form of N2O or NO3 ?. Here we report on a large-scale field lysimeter (8 × 4 m2) experiment, which was designed to determine soil CH4 and N2O emissions, NO3 ? leaching losses and crop yields from a subtropical rain-fed wheat–maize rotation in the Sichuan Basin, one of the most intensively used agricultural regions in China. One control and three different fertilizer treatments with the same total rate of N application (280 kg N ha?1 y?1) were included: NF: control (no fertilizer); NPK: synthetic N fertilizer; OMNPK: synthetic N fertilizer plus pig manure; RSDNPK: synthetic N fertilizer plus crop residues. As compared to the standard NPK treatment, annual NO3 ? leaching losses for OMNPK and RSDNPK treatments were decreased by 36 and 22%, respectively (P < 0.05). Similarly, crop yield-scaled NO3 ? leaching for NPK treatment was higher than those for either OMNPK or RSDNPK treatments (P < 0.05). Direct N2O emissions for RSDNPK treatment were decreased as compared with NPK and OMNPK treatments (P < 0.05). Furthermore, the yield-scaled GWP (global warming potential) was lower for the treatments where either pig manure or crop residues were incorporated as compared to the standard NPK treatment (P < 0.05). Our study indicates that it is possible to reduce the negative environmental impact of NO3 ? leaching and N2O emissions without compromising crop productivity. Yield-scaled NO3 ? leaching, similar to the yield-scaled GWP, represents another valuable-integrated metric to address the dual goals of reducing nitrogen pollution and maintaining crop grain yield for a given agricultural system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号