首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of calcitonin gene-related peptide (CGRP) in the skin of pig snout and human fingertip was investigated using immunohistochemical techniques. CGRP immunoreactivity was found in Merkel cells and nerve fibres of both species. In pig snout skin, Merkel cells containing CGRP were seen forming clusters at the tips of rete ridge epidermis and in the external root sheath of sinus hair follicles (vibrissae). Human Merkel cells immunostained for CGRP were found isolated or forming small groups in the basal layer of glandular epidermal ridges. In all cases, immunoreactivity was more intense on the side of the Merkel cell facing the associated nerve terminal (which was never positive for CGRP). This part of the Merkel cell has the greatest density of dense-cored granules, suggesting that CGRP must be stored in these granules. Nerve bundles containing CGRP-immunoreactive fibres were found at dermal and hypodermal level, and blood vessels were often surrounded by CGRP nerve fibres. In pig snout skin some nerve fibres containing CGRP penetrated the epidermis and terminated as free endings, and in the human fingertip a small number of CGRP-immunoreactive nerve fibres were seen in Meissner's corpuscles.  相似文献   

2.
Using an ultrastructural postembedding immunogold technique, we demonstrated vasoactive intestinal polypeptide (VIP)- and calcitonin gene-related peptide (CGRP)-like immunoreactivity in the Merkel cell dense-cored granules of skin and sinus hair follicles of adult cat and dog. The VIP-like substance was located in cat Merkel cells while both VIP- and CGRP-like substances were colocalised in dog Merkel cells. In cat Merkel cells, the magnitude of labelling of VIP was qualitatively higher than in dog Merkel cells. In the dog Merkel cell, CGRP appeared as the most abundant peptide. Dense-cored granules were labelled for these peptides. In addition, mast cells encountered in the dermal region of dog skin were also found to be immunolabelled by VIP antiserum. The immunoreaction was found to be confined to the secretory granules of the cells. Furthermore, all non-myelinated nerve plexuses encountered in the dermal region of the skin and the sinus hair follicles of the various mammalian species studied were immunolabelled by CGRP antiserum. The specific location was again restricted to the dense-cored granules present in these nerves. As VIP and CGRP have potent vasodilatory effects, our observations suggest that Merkel cells may play a separate or synergistic role in regulatory functions of the skin neuroendocrine cell, exerting their influence by paracrine, endocrine and neurocrine pathways, or a combination of these. Different methodologies of double labelling with different sizes of gold particles are also discussed.  相似文献   

3.
Summary Calcitonin gene-related peptide (CGRP)-and vasoactive intestinal polypeptide (VIP)-immunoreactivity were observed to coexist in Merkel cells of cats. No differences in peptide content were found between Merkel cells located in epithelia of the hard palate, in hairy and glabrous skin of the upper lip, and in vibrissae follicles. CGRP-and VIP-immunoreactive nerve fibres were also found near CGRP/VIP-immunoreactive Merkel cells. In the vibrissae follicles some CGRP-and VIP-immunoreactive nerve terminals end abutting on the glassy membrane. Other CGRP immunoreactive nerve fibres penetrate the epithelium of the skin and end within it. Electron microscopy of vibrissae follicles revealed that Merkel cell neuntes are not immunostained and that immunostained nerve fibres form unmyelinated bundles before ending freely. Thus, CGRP-and VIP immunoreactive nerve fibres in cat skin do not end as Merkel cell neuntes but as different kinds of free nerve endings.  相似文献   

4.
The distribution of calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibres in the palate of rat, cat and monkey was studied using immunocytochemistry and radioimmunoassay. CGRP-containing nerve fibres were found, in all species studied, to form a rich plexus in the subepithelial and submucous layers, around excretory ducts and blood vessels. A small number of CGRP-containing nerve fibres penetrated the epithelium of the hard and soft palate, and terminated as free endings. Some CGRP-containing nerve fibres were found in the vicinity of the mucous glands. CGRP-immunoreactive motor end plates were seen in the striated muscle (tensor veli palatini) of the soft palate. Following capsaicin treatment a small depletion in CGRP-immunoreactive nerve fibres in the rat palate epithelium was noted. In contrast, CGRP immunoreactive fibres forming rich plexuses in other layers of the palate, including motor end plates, were not affected. The extractable CGRP showed no significant depletion (normal animals [n = 10] 21.7 +/- 2.4 pmol/g compared with capsaicin-treated animals [n = 10] 17.5 +/- 1.8 pmol CGRP/g wet weight). The reduction in the number of visible immunoreactive nerves following capsaicin application tends to confirm the sensory character of the CGRP-containing nerve fibres terminating in the epithelium of the hard and soft palate. The capsaicin insensitive CGRP-immunoreactive nerve fibres may thus have a predominantly motor function.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Summary The occurrence and distribution of peptide-containing nerve fibres [substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), neuropeptide Y (NPY)] and noradrenergic nerve fibres [tyrosine hydroxylase (TH)- and dopamine beta hydroxylase (DBH)-positive] in the airways of the pig were studied by means of immunohistochemistry. SP- and CGRP-immunoreactive (-IR) nerve fibres were present close to and within the lining respiratory epithelium, around blood vessels, within the tracheobronchial smooth muscle layer and around local tracheobronchial ganglion cells. The content of CGRP- and neurokinin A (NKA)-like immunoreactivity (-LI) measured by radioimmunoassay (RIA) was twice as high in the trachea compared to that in the peripheral bronchi. SP was a more potent constrictor agent than NKA on pig bronchi in vitro. CGRP had a relaxant effect on precontracted pig bronchi. On blood vessels CGRP exerted a relaxant effect that was more pronounced on pulmonary arteries than on bronchial arteries. VIP/PHI-IR fibres were seen in association with exocrine glands and in the tracheobronchial smooth muscle layer. VIP-positive nerve fibres were abundant around blood vessels in the trachea but sparse or absent around blood vessels in the peripheral bronchi. This histological finding was supported by RIA; it was shown that the content of peptides displaying VIP-like immunoreactivity (-LI) was 18 times higher in the trachea compared to peripheral bronchi. VIP was equally potent as CGRP in relaxing precontracted pig bronchi in vitro. Both bronchial and pulmonary arteries were relaxed by VIP. NPY was colocalized with VIP in tracheal periglandular nerve fibres and in nerve fibres within the tracheobronchial smooth muscle layer. NPY was also present in noradrenergic (DBH-positive) vascular nerve fibres. The content of NPY was much higher (15-fold) in the trachea compared to small bronchi. NPY caused a contraction of both pulmonary and bronchial arteries. The bronchial smooth muscle contraction to field stimulation in vitro was purely cholinergic. A non-cholinergic relaxatory effect following field stimulation was observed after bronchial precontraction. Capsaicin had no effect on pig bronchi in vitro.  相似文献   

6.
Summary The localization and distribution of calcitonin gene-related peptide (CGRP) and bombesin/gastrin-releasing peptide (GRP) immunoreactivity were studied in the rat, guinea pig and pig female genital organs with indirect immunohistochemical technique. In the rat, guinea pig and pig. CGRP and GRP immunoreactivities were localized in nerve fibers of the uterus, ovary and oviduct. Generally, CGRP-immunoreactive nerve fibers were intensely stained, while GRP-immunoreactive nerve fibers exhibited moderate immunoreactivity. The number of GRP-immunoreactive nerve fibers in these organs was lower in comparison with that of CGRP-immunoreactive nerve fibers. The pattern of distribution of these nerve fibers was very similar in different genital organs of all species studied. In the uterus of rat, guinea pig ang pig, CGRP-and GRP-immunoreactive nerve fibers and nerve bundles were observed in the muscular membrane and around blood vessels. Some delicate CGRP-and GRP-immunoreactive nerve fibers were also present in the submucous layer of the uterus. In the oviduct. CGRP-and GRP-immunoreactive nerve fibers were seen in the muscular membrane, around blood vessels and in the submucous layer. In the ovary, CGRP-and GRP-immunoreactive nerve fibers were distributed in medullary stroma, in close contact with blood vessels and between follicles of different stages of development.  相似文献   

7.
Summary Nerve fibres displaying immunoreactivity to calcitonin gene-related peptide (CGRP) are abundantly distributed in the respiratory tract of man, dog, cat, guineapig, rat and mouse. Numerous fine, beaded CGRP fibres were seen in the middle ear mucosa, and a moderate supply was found in the ear drum. In the nasal mucosa and in the wall of the Eustachian tube CGRP fibres occurred around blood vessels, arteries in particular. A conspiciously rich supply of CGRP fibres was seen beneath and within the epithelium. In addition, a few fibres were seen in smooth muscle bundles and close to sero-mucous glands. In the tracheo-bronchial wall CGRP fibres were distributed beneath and within the epithelium, in vascular and non-vascular smooth muscle and sometimes close to small glands. A few CGRP-immunoreactive endocrine-like cells were, in addition, distributed in the tracheal epithelium of cat, rat and mouse. The trigeminal, spinal and nodose ganglia, studied in rats and guinea-pigs, harboured numerous CGRP-immunoreactive nerve cell bodies. The cervical sympathetic ganglia were devoid of immunoreactive neuronal perikarya. Surgical and chemical (6-hydroxydopamine treatment) sympathectomy did not affect the number and distribution of CGRP fibres. The distribution of CGRP fibres in the respiratory tract suggests that CGRP may take part in sensory transmission. In addition, CGRP may affect the regulation of local blood flow, smooth muscle tone and glandular secretion.  相似文献   

8.
Summary The present immunohistochemical study reveals that a small number of chromaffin cells in the rat adrenal medulla exhibit CGRP-like immunoreactivity. All CGRP-immunoreactive cells were found to be chromaffin cells without noradrenaline fluorescence; from combined immunohistochemistry and fluorescence histochemistry we suggest that these are adrenaline cells. In addition, all CGRP-immunoreactive cells simultaneously exhibited NPY-like immunoreactivity. CGRP-chromaffin cells were characterized by abundant chromaffin granules with round cores in which the immunoreactive material was densely localized. These findings suggest the co-existence of CGRP, NPY and adrenaline within the chromaffin granules in a substantial number of chromaffin cells.Thicker and thinner nerve bundles, which included CGRP-immunoreactive nerve fibers, with or without varicosities, penetrated the adrenal capsule. Most of them passed through the cortex and entered the medulla directly, whereas others were distributed in subcapsular regions and among the cortical cells of the zona glomerulosa. Here the CGRP-fibers were in close contact with cortical cells. A few of the fibers supplying the cortex extended further into the medulla. The CGRP-immunoreactive fibers in the medulla were traced among and within small clusters of chromaffin cells and around ganglion cells. The CGRP-fibers were directly apposed to both CGRP-positive and negative chromaffin cells, as well as to ganglion cells. Immunoreactive fibers, which could not be found close to blood vessels, were characterized by the presence of numerous small clear vesicles mixed with a few large granular vesicles. The immunoreactive material was localized in the large granular vesicles and also in the axoplasm. Since no ganglion cells with CGRP-like immunoreactivity were found in the adrenal gland, the CGRP-fibers are regarded as extrinsic in origin. In double-immunofluorescence staining for CGRP and SP, all the SP-immunoreactive fibers corresponded to CGRP-immunoreactive ones in the adrenal gland. This suggests that CGRP-positive fibers in the adrenal gland may be derived from the spinal ganglia, as has been demonstrated with regard to the SP-nerve fibers.  相似文献   

9.
O H?pp?l?  M Lakomy 《Histochemistry》1989,92(3):211-218
The localization and distribution of calcitonin gene-related peptide (CGRP) and bombesin/gastrin-releasing peptide (GRP) immunoreactivity were studied in the rat, guinea pig and pig female genital organs with indirect immunohistochemical technique. In the rat, guinea pig and pig, CGRP and GRP immunoreactivities were localized in nerve fibers of the uterus, ovary and oviduct. Generally, CGRP-immunoreactive nerve fibers were intensely stained, while GRP-immunoreactive nerve fibers exhibited moderate immunoreactivity. The number of GRP-immunoreactive nerve fibers in these organs was lower in comparison with that of CGRP-immunoreactive nerve fibers. The pattern of distribution of these nerve fibers was very similar in different genital organs of all species studied. In the uterus of rat, guinea pig and pig, CGRP- and GRP-immunoreactive nerve fibers and nerve bundles were observed in the muscular membrane and around blood vessels. Some delicate CGRP- and GRP-immunoreactive nerve fibers were also present in the submucous layer of the uterus. In the oviduct, CGRP- and GRP-immunoreactive nerve fibers were seen in the muscular membrane, around blood vessels and in the submucous layer. In the ovary, CGRP- and GRP-immunoreactive nerve fibers were distributed in medullary stroma, in close contact with blood vessels and between follicles of different stages of development.  相似文献   

10.
Summary It was previously demonstrated that the two chemically related peptides calcitonin gene-related peptide (CGRP) and islet amyloid polypeptide (IAPP) both occur in the pancreas. We have now examined the cellular localization of CGRP and IAPP in the rat and the mouse pancreas. We found, in both the rat and the mouse pancreas, CGRP-immunoreactive nerve fibers throughout the parenchyma, including the islets, with particular association with blood vessels. CGRP-immunoreactive nerve fibers were regularly seen within the islets. In contrast, no IAPP-immunoreactive nerve fibers were demonstrated in this location. Furthermore, in rat islets, CGRP immunoreactivity was demonstrated in peripherally located cells, constituting a major subpopulation of the somatostatin cells. Such cells were lacking in the mouse islets. IAPP-like immunoreactivity was demonstrated in rat and mouse islet insulin cells, and, in the rat, also in a few non-insulin cells in the islet periphery. These cells seemed to be identical with somatostatin/CGRP-immunoreactive elements. In summary, the study shows (1) that CGRP, but not IAPP, is a pancreati neuropeptide both in the mouse and the rat; (2) that a subpopulation of rat somatostatin cells contain CGRP; (3) that mouse islet endocrine cells do not contain CGRP; (4) that insulin cells in both the rat and the mouse contain IAPP; and (5) that in the rat, a non-insulin cell population apparently composed of somatostatin cells stores immunoreactive IAPP. We conclude that CGRP is a pancreatic neuropeptide and IAPP is an islet endocrine peptide in both the rat and the mouse, whereas CGRP is an islet endocrine peptide in the rat.  相似文献   

11.
Summary A monoclonal antibody (mAb), 129CD8 was raised against a C-terminal fragment (aa28–37) of -human calcitonin gene-related peptide (CGRP) coupled to bovine serum albumin. The specificity of the monoclonal antibody 129CD8 was corroborated by dot immunobinding experiments, enzyme-linked immunoassay and immunostaining of tissue sections. In vitro studies showed that the mAb 129CD8 readily recognized the fragment 28–37 of -human CGRP and to a slightly lesser degree whole -human CGRP and the fragments containing the C-terminal part of the molecule. The mAb 129CD8 also recognized the -human CGRP but not the -rat CGRP. The mAb 129CD8 did not react with substance P, katacalcin, calcitonin, amylin or fragments of -human CGRP lacking the C-terminal part of the molecule.Immunocytochemical staining was performed on human skin, guinea-pig thyroid and salivary glands and the trigeminal ganglion, and rat thyroid gland. Our findings demonstrate, in keeping with previous studies, that in human skin, nerve fibres containing CGRP immunoreactivity are found in both epidermis and dermis. In accordance with previous investigators, the Merkel cells were immunoreactive for CGRP. In the guinea-pig and rat thyroid gland CGRP immunoreactivity was localized in the C-cells. The distribution of CGRP immunoreactivity in the guinea-pig salivary glands is different from that previously reported for rat salivary glands. In the guinea-pig trigeminal ganglion, CGRP immunoreactivity was localized mainly in small-sized neurons and fibres traversing the ganglion. Double staining with substance P performed on guinea-pig trigeminal ganglion revealed four types of sensory neurons, those containing both peptides, those containing only substance P or CGRP and those lacking both peptides. Guinea-pig parotid gland, but not the submandibular or sublingual glands, contained periacinar fibres exhibiting both immunoreactivities. Substance P-positive, CGRP-positive fibres were also seen around parotid and submandibular, but not around sublingual, gland ducts. All glands received perivascular innervation showing immunoreactivities for both peptides. The present results support the idea that in the peripheral nervous system only a subpopulation of sensory neurons contains both substance P and CGRP. Consequently, colocalization of substance P and CGRP indicates a sensory nerve, while those containing either substance P or CGRP may be sensory or parasympathetic.  相似文献   

12.
Summary Immunogold staining failed to show met-enkephalin immunoreactivity in the Merkel cell dense-core granules of rats when examined by electron microscopy, but showed gold particle staining in the Merkel cell dense-core granules of mice and nude mice. Merkel cells of hamster, guinea pig, rabbit, cat and dog were also examined using a similar method, and different antisera dilutions. Immunogold particles were consistently found in the dense-core granules of mice and nude mice at all antisera dilutions, but not in the other species, except in the dog, where a very low labelling response was encountered. Merkel cells from skin touch domes or sinus hair follicles, did not exhibit any difference in peptide expression as far as met-enkephalin immunoreactivity was concerned. In addition, all species studied, including mice and nude mice, did not show leu-enkephalin immunoreactivity in their Merkel cell dense-core granules. It is concluded that species variability in peptide expression occurs in the Merkel cell dense-core granules, and may be closely related to the different methodologies used.  相似文献   

13.
R Kurkowski  W Kummer  C Heym 《Peptides》1990,11(1):13-20
Double-labeling immunofluorescence of guinea pig tracheobronchial lymph nodes revealed complete coincidence of SP and CGRP immunoreactivities in perivascular nerves and axons of the medullary lymphatic tissue. Additional dynorphin A or cholecystokinin immunoreactivity was seen only in some of the medullary fibers. Ultrastructurally, all SP-immunoreactive axons were unmyelinated and displayed vesicle-containing varicosities. Retrograde neuronal tracing combined with immunohistochemistry revealed a sensory origin from dorsal root ganglia of SP/CGRP-immunoreactive fibers ramifying within paratracheal lymph nodes, and an additional neuronal population being devoid of SP/CGRP immunoreactivity. The findings provide evidence for several types of sensory nerve fibers innervating lymph nodes.  相似文献   

14.
Summary Indirect immunofluorescence technique was used to study the occurrence and distribution of CGRP immunoreactivity in the submandibular gland of normal rats and after unilateral sensory and sympathetic denervations. In normal rats, CGRP-immunoreactive nerve fibers and nerve trunks were seen around or in close contact with interlobular salivary ducts as well as around small blood vessels of the gland. Occasionally, CGRP-immunoreactive nerve fibers were also detected between or around the acini of the gland.The submandibular ganglia contained CGRP-immunoreactive nerve fibers, but the ganglion cells were not immunoreactive for CGRP. The trigeminal ganglion contained a population of CGRP-immunoreactive, mainly small sized ganglion cells and nerve fibers distributed throughout the ganglion. Unilateral electrocoagulation of the trigeminal nerve caused a significant reduction in the number of immunoreactive nerve fibers in the gland, although some fibers still were present in the ipsilateral glandular tissue. Unilateral superior cervical ganglionectomy caused no detectable effect on the number of CGRP-immunoreactive nerve fibers in the gland.The present results suggest that the rat submandibular gland contains CGRP-immunoreactive nerve fibers both around blood vessels and in glandular secretory elements. Denervation experiments support the view that the majority, but perhaps not all of them originate from the trigeminal ganglion.  相似文献   

15.
Summary We have previously shown depletion of nerves and neuropeptides in skin biopsies of diabetic patients, even in the absence of clinical signs and symptoms of sensory and autonomic neuropathy, but were unable to examine the changes occurring at an early stage of the disease. Therefore, the distribution and relative density of peptide-containing nerves was studied in streptozotocin-treated rats in order to assess the progression of neural changes in the initial stages of diabetes. Skin samples dissected from the lip and footpad of diabetic rats, 2, 4, 8 and 12 weeks after streptozotocin injection and age matched controls were sectioned and were immunostained with antisera to the neuropeptides substance P, calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and neuropeptide Y (NPY), and to a general neural marker, protein gene product 9.5 (PGP 9.5). No change was apparent in the distribution or relative density of immunoreactive cutaneous nerve fibres 2, 4 and 8 weeks after streptozotocin treatment. By 12 weeks there was a marked increase in the number of CGRP-immunoreactive fibres present in epidermis and dermis, and of VIP-immunoreactive fibres around sweat glands and blood vessels. A parallel increase was seen in nerves displaying PGP 9.5 immunoreactivity. No differences were detected in nerves immunoreactive for either substance P in the epidermis and dermis, and NPY around blood vessels. The alterations in the peptide immunoreactivities may be similar in the initial stages of human diabetes.  相似文献   

16.
We have previously shown depletion of nerves and neuropeptides in skin biopsies of diabetic patients, even in the absence of clinical signs and symptoms of sensory and autonomic neuropathy, but were unable to examine the changes occurring at an early stage of the disease. Therefore, the distribution and relative density of peptide-containing nerves was studied in streptozotocin-treated rats in order to assess the progression of neural changes in the initial stages of diabetes. Skin samples dissected from the lip and footpad of diabetic rats, 2, 4, 8 and 12 weeks after streptozotocin injection and age matched controls were sectioned and were immunostained with antisera to the neuropeptides substance P, calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and neuropeptide Y (NPY), and to a general neural marker, protein gene product 9.5 (PGP 9.5). No change was apparent in the distribution or relative density of immunoreactive cutaneous nerve fibres 2, 4 and 8 weeks after streptozotocin treatment. By 12 weeks there was a marked increase in the number of CGRP-immunoreactive fibres present in epidermis and dermis, and of VIP-immunoreactive fibres around sweat glands and blood vessels. A parallel increase was seen in nerves displaying PGP 9.5 immunoreactivity. No differences were detected in nerves immunoreactive for either substance P in the epidermis and dermis, and NPY around blood vessels. The alterations in the peptide immunoreactivities may be similar in the initial stages of human diabetes.  相似文献   

17.
Indirect immunofluorescence technique was used to study the occurrence and distribution of CGRP immunoreactivity in the submandibular gland of normal rats and after unilateral sensory and sympathetic denervations. In normal rats, CGRP-immunoreactive nerve fibers and nerve trunks were seen around or in close contact with interlobular salivary ducts as well as around small blood vessels of the gland. Occasionally, CGRP-immunoreactive nerve fibers were also detected between or around the acini of the gland. The submandibular ganglia contained CGRP-immunoreactive nerve fibers, but the ganglion cells were not immunoreactive for CGRP. The trigeminal ganglion contained a population of CGRP-immunoreactive, mainly small sized ganglion cells and nerve fibers distributed throughout the ganglion. Unilateral electrocoagulation of the trigeminal nerve caused a significant reduction in the number of immunoreactive nerve fibers in the gland, although some fibers still were present in the ipsilateral glandular tissue. Unilateral superior cervical ganglionectomy caused no detectable effect on the number of CGRP-immunoreactive nerve fibers in the gland. The present results suggest that the rat submandibular gland contains CGRP-immunoreactive nerve fibers both around blood vessels and in glandular secretory elements. Denervation experiments support the view that the majority, but perhaps not all of them originate from the trigeminal ganglion.  相似文献   

18.
Calcitonin gene-related peptide (CGRP) in the female rat urogenital tract   总被引:1,自引:0,他引:1  
CGRP-immunoreactivity was found throughout the female rat urogenital tract by specific radioimmunoassay, and shown to be present in nerve fibres by immunocytochemistry. The highest concentrations of CGRP-like immunoreactivity were found in the urinary tract, with lower levels in regions of the genitalia. Chromatographic analysis of bladder and vaginal extracts on Sephadex G-50 columns and HPLC revealed at least three CGRP-immunoreactive peaks. The major peak emerged in the same position as synthetic rat CGRP. CGRP nerve fibres were associated mainly with blood vessels, non-vascular smooth muscle, squamous epithelium and uterine and cervical glands, and were particularly abundant in the ureter and bladder. CGRP-immunoreactivity was depleted by neonatal treatment with capsaicin and after surgical section of pelvic and/or hypogastric nerves. Immunocytochemistry demonstrated that depletion occurred predominantly in the mucosal layer of the urogenital tract. These findings indicate a sensory function for most of the CGRP-immunoreactive nerves in the rat urogenital tract.  相似文献   

19.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is the latest member of the vasoactive intestinal polypeptide (VIP) family of neuropeptides present in nerve fibres in many peripheral organs. Using double immunohistochemistry, with VIP as a marker for intrinsic innervation and calcitonin-gene related peptide (CGRP) as a marker for mainly extrinsic innervation, the distribution and localization of PACAP were studied in the rat pancreas. PACAP was demonstrated in nerve fibres in all compartments of the pancreas and in a subpopulation of intrapancreatic VIP-containing ganglion cells. PACAP and VIP were co-stored in intra- and interlobular nerve fibres innervating acini, blood vessels, and in nerve fibres within the islets of Langerhans. No PACAP immunoreactivity was observed in the islet cells. Another population of PACAP-immunoreactive nerve fibres co-localized with CGRP innervated ducts, blood vessels and acini. PACAP/CGRP-positive nerve fibres were also demonstrated within the islets. Neonatal capsaicin reduced the PACAP-38 concentration by approximately 50%, and accordingly a marked reduction in PACAP/CGRP-immunoreactive nerve fibres in the exocrine and endocrine pancreas was observed. Bilateral subdiaphragmatic vagotomy caused a slight but significant decrease in the PACAP-38 concentration compared with controls. In conclusion, PACAP-immunoreactive nerve fibres in the rat pancreas seem to have dual origin: extrinsic, most probably sensory fibres co-storing CGRP; and intrinsic, constituting a subpopulation of VIP-containing nerve cell bodies and fibres innervating acinar cells and islet cells. Our data provide a morphological basis for the reported effects of PACAP in the pancreas and suggest that PACAP-containing nerves in the rat pancreas may have both efferent and sensory functions.  相似文献   

20.
R H Webber  C Heym 《Histochemistry》1988,88(3-6):287-297
Immunohistochemistry of peptide- and dopamine-beta-hydroxylase-(DBH)-containing varicose nerve fibres and ganglion cells, respectively, in the guinea pig inferior mesenteric ganglion was investigated following a) transsection of mesenteric (colonic) branches, b) transsection of central (lumbar splanchnic, intermesenteric and hypogastric) branches, and c) transplantation into the spleen. The findings indicate that pathways of different opioid peptides are not identical. Met-enkephalin- and met-enkephalin-arg-phe- (cleavage products from pre-proenkephalin) containing fibres course in central branches to make contact in the inferior mesenteric ganglion. Dynorphin- and alpha-neo-endorphin- (deriving from pre-prodynorphin) containing fibres as well as leu-enkephalin- (included in the dynorphin sequence) fibres appear to rise not only from central and from enteric somata, but also from intraganglionic noradrenergic neurons. Similar pathways seem to be used by VIP- and by neurotensin-immunoreactive fibres, although intraganglionic neurotensin-immunoreactive cell bodies are rare. Practically all substance P- and most CGRP-immunoreactive fibres enter the ganglion via central branches and, to a large extent, traverse it, but some CGRP-immunoreactive influx appears to come from the intestine. The origin of intraganglionic substance P- and CGRP-immunoreactive fibres after ganglion transplantation remained unidentified. Somatostatin- and neuropeptide Y-immunoreactive fibres predominantly have an intraganglionic origin as have DBH-immunoreactive noradrenergic fibres. The demonstrated alterations in neuropeptide immunoreactivity of intraganglionic and periganglionic nerve fibres following the applied transsection procedures contribute to the present knowledge on origin and destination of peptidergic transmitter segments in the guinea pig inferior mesenteric ganglion. Moreover, the present study provides evidence that intrinsic participation in intraganglionic fibre supply is more extensive than hitherto believed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号