首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yang CC  Chen D  Lee SS  Walter L 《Aging cell》2011,10(4):724-728
Here, we report that inactivation of the Caenorhabditis elegans dynamin-related protein DRP-1, a key component responsible for mitochondrial fission and conserved from yeast to humans, dramatically enhanced the effect of reduced insulin signaling (IIS) to extend lifespan. This represents the first report of a beneficial impact of manipulating mitochondrial dynamics on animal lifespan and suggests that mitochondrial morphology and IIS cooperate to modulate aging.  相似文献   

2.
In wild-type Caenorhabditis elegans, the hermaphrodite gonad is a symmetrical structure, whereas the male gonad is asymmetric. Two cellular processes are critical for the generation of these sexually dimorphic gonadal shapes during early larval development. First, regulatory "leader" cells that control tube extension and gonadal shape are generated. Second, the somatic gonadal precursor cells migrate and become rearranged to establish the adult pattern. In this paper, we introduce sys-1, a gene required for early organization of the hermaphrodite, but not the male, gonad. The sys-1(q544) allele behaves genetically as a strong loss-of-function mutant and putative null. All hermaphrodites that are homozygous for sys-1(q544) possess a grossly malformed gonad and are sterile; in contrast, sys-1(q544) males exhibit much later and only partially penetrant gonadal defects. The sys-1(q544) hermaphrodites exhibit two striking early gonadal defects. First, the cell lineages of Z1 and Z4, the somatic gonadal progenitor cells, produce extra cells during L2, but the regulatory cells that control gonadal shape are not generated. Second, somatic gonadal precursor cells do not cluster centrally during late L2, and the somatic gonadal primordium typical of hermaphrodites is not established. In contrast, the early male gonadal lineage is asymmetric as normal, the somatic gonadal primordium typical of males is established correctly, and the male adult gonadal structures can be normal. We conclude that the primary role of sys-1 is to establish the shape and polarity of the hermaphrodite gonad.  相似文献   

3.
Neuritogenesis is a critical early step in the development and maturation of neurons and neuronal circuits. While extracellular directional cues are known to specify the site and orientation of nascent neurite formation in vivo, little is known about the genetic pathways that block inappropriate neurite emergence in order to maintain proper neuronal polarity. Here we report that the Caenorhabditis elegans orthologues of Van Gogh (vang-1), Prickle (prkl-1), and Dishevelled (dsh-1), core components of planar cell polarity (PCP) signaling, are required in a subset of peripheral motor neurons to restrict neurite emergence to a specific organ axis. In loss-of-function mutants, neurons display supernumerary neurites that extend inappropriately along the orthogonal anteroposterior (A/P) body axis. We show that autonomous and non-autonomous gene activities are required early and persistently to inhibit the formation or consolidation of growth cone protrusions directed away from organ precursor cells. Furthermore, prkl-1 overexpression is sufficient to suppress neurite formation and reorient neuronal polarity in a vang-1- and dsh-1-dependent manner. Our findings suggest a novel role for a PCP-like pathway in maintaining polarized neuronal morphology by inhibiting neuronal responses to extrinsic or intrinsic cues that would otherwise promote extraneous neurite formation.  相似文献   

4.
5.
Wnt signaling is a major and highly conserved developmental pathway that guides many important events during embryonic and larval development. In adulthood, misregulation of Wnt signaling has been implicated in tumorigenesis and various age‐related diseases. These effects occur through highly complicated cell‐to‐cell interactions mediated by multiple Wnt‐secreted proteins. While they share a high degree of sequence similarity, their function is highly diversified. Although the role of Wnt ligands during development is well studied, very little is known about the possible actions of Wnt signaling in natural aging. In this study, Caenorhabditis elegans serves, for the first time, as a model system to determine the role of Wnt ligands in aging. Caenorhabditis elegans has five Wnt proteins, mom‐2, egl‐20, lin‐44, cwn‐1, and cwn‐2. We show that all five Wnt ligands are expressed and active past the development stages. The ligand mom‐2/Wnt plays a major detrimental role in longevity, whereas the function of lin‐44/Wnt is beneficial for long life. Interestingly, no evidence was found for Wnt signaling being involved in cellular or oxidative stress responses during aging. Our results suggest that Wnt signaling regulates aging‐intrinsic genetic pathways, opening a new research direction on the role of Wnt signaling in aging and age‐related diseases.  相似文献   

6.
Zinovyeva AY  Yamamoto Y  Sawa H  Forrester WC 《Genetics》2008,179(3):1357-1371
Members of the Wnt family of secreted glycoproteins regulate many developmental processes, including cell migration. We and others have previously shown that the Wnts egl-20, cwn-1, and cwn-2 are required for cell migration and axon guidance. However, the roles in cell migration of all of the Caenorhabditis elegans Wnt genes and their candidate receptors have not been explored fully. We have extended our analysis to include all C. elegans Wnts and six candidate Wnt receptors: four Frizzleds, the sole Ryk family receptor LIN-18, and the Ror receptor tyrosine kinase CAM-1. We show that three of the Wnts, CWN-1, CWN-2, and EGL-20, play major roles in directing cell migrations and that all five Wnts direct specific cell migrations either by acting redundantly or by antagonizing each other's function. We report that all four Frizzleds function to direct Q-descendant cell migrations, but only a subset of the putative Wnt receptors function in directing migrations of other cells. Finally, we find striking differences between the phenotypes of the Wnt quintuple and Frizzled quadruple mutants.  相似文献   

7.
8.
Spindle assembly checkpoint (SAC) ensures genome stability by delaying anaphase onset until all the chromosomes have achieved proper spindle attachment. Once correct attachment has been achieved, SAC must be silenced. In the absence of mdf-1/MAD1, an essential SAC component, Caenorhabditis elegans cannot propagate beyond 3 generations. Previously, in a dog-1(gk10)/FANCJ mutator background, we isolated a suppressor of mdf-1(gk2) sterility (such-4) which allowed indefinite propagation in the absence of MDF-1. We showed that such-4 is a Cyclin B3 (cyb-3) duplication. Here we analyze mdf-1 such-4; dog-1, which we propagated for 470 generations, with freezing of samples for long time storage at F170 and F270. Phenotypic analysis of this strain revealed additional suppression of sterility in the absence of MDF-1, beyond the effects of such-4. We applied oligonucleotide array Comparative Genomic Hybridization (oaCGH) and whole genome sequencing (WGS) and identified a further amplification of cyb-3 (triplication) and a new missense mutation in dynein heavy chain (dhc-1). We show that dhc-1(dot168) suppresses the mdf-1(gk2), and is the second cloned suppressor, next to cyb-3 duplication, that does not cause a delay in anaphase onset. We also show that amplification of cyb-3 and dhc-1(dot168) cooperate to increase fitness in the absence of MDF-1.  相似文献   

9.
In most animals, multiple genes encode protein kinase C (PKC) proteins. Pharmacological studies have revealed numerous roles for this protein family, yet the in vivo roles of specific PKC proteins and the functional targets of PKC activation are poorly understood. We find that in Caenorhabditis elegans, two PKC genes, pkc-1 and tpa-1, are required for mechanosensory response; the role of the nPKCε/η ortholog, pkc-1, was examined in detail. pkc-1 function is required for response to nose touch in adult C. elegans and pkc-1 likely acts in the interneurons that regulate locomotion which are direct synaptic targets of mechanosensory neurons. Previous studies have suggested numerous possible targets of pkc-1; our analysis indicates that pkc-1 may act via the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway. We find that ERK/MAPK pathway function is required for mechanosensory response in C. elegans and that at least one component of this pathway, lin-45 Raf, acts in interneurons of the mechanosensory circuit. Genetic analysis indicates that lin-45 and pkc-1 act together to regulate nose touch response. Thus, these results functionally link two conserved signaling pathways in adult C. elegans neurons and define distinct roles for PKC genes in vivo.  相似文献   

10.
We have identified in Caenorhabditis elegans a homologue of the vertebrate Crim1, crm-1, which encodes a putative transmembrane protein with multiple cysteine-rich (CR) domains known to have bone morphogenetic proteins (BMPs) binding activity. Using the body morphology of C. elegans as an indicator, we showed that attenuation of crm-1 activity leads to a small body phenotype reminiscent of that of BMP pathway mutants. We showed that the crm-1 loss-of-function phenotype can be rescued by constitutive supply of sma-4 activity. crm-1 can enhance BMP signaling and this activity is dependent on the presence of the DBL-1 ligand and its receptors. crm-1 is expressed in neurons at the ventral nerve cord, where the DBL-1 ligand is produced. However, ectopic expression experiments reveal that crm-1 gene products act outside the DBL-1 producing cells and function non-autonomously to facilitate dbl/sma pathway signaling to control body size.  相似文献   

11.
Tissue-specific stem cells combine proliferative and asymmetric divisions to balance self-renewal with differentiation. Tight regulation of the orientation and plane of cell division is crucial in this process. Here, we study the reproducible pattern of anterior-posterior-oriented stem cell-like divisions in the Caenorhabditis elegans seam epithelium. In a genetic screen, we identified an alg-1 Argonaute mutant with additional and abnormally oriented seam cell divisions. ALG-1 is the main subunit of the microRNA-induced silencing complex (miRISC) and was previously shown to regulate the timing of postembryonic development. Time-lapse fluorescence microscopy of developing larvae revealed that reduced alg-1 function successively interferes with Wnt signaling, cell adhesion, cell shape and the orientation and timing of seam cell division. We found that Wnt inactivation, through mig-14 Wntless mutation, disrupts tissue polarity but not anterior-posterior division. However, combined Wnt inhibition and cell shape alteration resulted in disordered orientation of seam cell division, similar to the alg-1 mutant. Our findings reveal additional alg-1-regulated processes, uncover a previously unknown function of Wnt ligands in seam tissue polarity, and show that Wnt signaling and geometric cues redundantly control the seam cell division axis.  相似文献   

12.
In order to elucidate the function of the cytoplasmic core (or rachis: a structure specific of the nematode gonads), we have carried out a cytological study of this structure in the free-living nematode Caenorhabditis elegans, in wild-type and in several mutant strains showing an abnormal gametogenesis. We also performed an ultrastructural radioautographic study of RNA synthesis during oogenesis in order to examine the part played by the rachis in the transport of nutritive substances. Our results evidence for the first time a metabolite transfer from the germ cells to the cytoplasmic core and lead us to assign to the core a trophic role linked to oogenesis. A statistical analysis of silver grain distribution has led us to conclude that there is no accumulation of RNA labelling in any part of the cytoplasmic core. In addition, our studies performed on sterile mutant strains suggest that the cytoplasmic core may have a specific function in oogenesis determination.  相似文献   

13.
Our knowledge of many aspects of the molecular biology of animal parasitic nematodes has rapidly expanded in recent years but the classical genetic analysis of this group of organisms has yet to emerge as a viable discipline. For example, it is not possible to routinely perform crosses between single males and females to examine the genetic basis of even simple phenotypes such as anthelmintic resistance. This has meant that the function of many cloned parasite genes can only be inferred from sequence comparison with genes from other organisms where the function is known, or by correlation of DNA polymorphisms linked to the gene with phenotypic differences between strains or individuals. In the absence of classical genetic techniques, a molecular solution is to transform a suitable host with the gene of interest, but what defines a suitable host? Here, Warwick Grant describes recent work that aims to provide such a host.  相似文献   

14.
The simplicity of C. elegans makes it an outstanding system to study the role of Wnt signaling in development. Many asymmetric cell divisions in C. elegans require the Wnt/beta-catenin asymmetry pathway. Recent studies confirm that SYS-1 is a structurally and functionally divergent beta-catenin, and implicate lipids and retrograde trafficking in maintenance of WRM-1/beta-catenin asymmetry. Wnts also regulate short-range events such as spindle rotation and gastrulation, and a PCP-like pathway regulates asymmetric divisions. Long-range, cell non-autonomous Wnt signals regulate vulval induction. Both short-range and long-range Wnt signal s are regulated by recycling of MIG-14/Wntless via the retromer complex. These studies indicate that C. elegans continues to be useful for identifying new, conserved mechanisms underlying Wnt signaling in metazoans.  相似文献   

15.
16.
Eisenmann DM  Kim SK 《Genetics》2000,156(3):1097-1116
The Caenorhabditis elegans vulva develops from the progeny of three vulval precursor cells (VPCs) induced to divide and differentiate by a signal from the somatic gonad. Evolutionarily conserved Ras and Notch extracellular signaling pathways are known to function during this process. To identify novel loci acting in vulval development, we carried out a genetic screen for mutants having a protruding-vulva (Pvl) mutant phenotype. Here we report the initial genetic characterization of several novel loci: bar-1, pvl-4, pvl-5, and pvl-6. In addition, on the basis of their Pvl phenotypes, we show that the previously identified genes lin-26, mom-3/mig-14, egl-18, and sem-4 also function during vulval development. Our characterization indicates that (1) pvl-4 and pvl-5 are required for generation/survival of the VPCs; (2) bar-1, mom-3/mig-14, egl-18, and sem-4 play a role in VPC fate specification; (3) lin-26 is required for proper VPC fate execution; and (4) pvl-6 acts during vulval morphogenesis. In addition, two of these genes, bar-1 and mom-3/mig-14, are known to function in processes regulated by Wnt signaling, suggesting that a Wnt signaling pathway is acting during vulval development.  相似文献   

17.
Wnt信号通路与后口动物体轴的进化发育   总被引:2,自引:0,他引:2  
Qian GH  Wang YQ 《遗传》2011,33(7):684-694
动物体轴极性的建立和最初胚轴的形成涉及到一系列信号通路的调控,Wnt信号通路是其中一条十分保守的信号通路,并且Wnt/β-catenin信号通路中的关键成员早在海绵动物中就有发现,暗示这一信号通路相对于其他信号路径来说可能是最早参与原始后生动物体轴发育的信号通路之一,并且在体轴后端和腹部的发育及命运分化方面发挥着重要作用。近年来,随着体外功能实验体系的建立,人们发现Wnt信号通路中很多基因都不同程度地影响了早期胚轴的形成,例如wnt基因、母源性基因β-catenin以及一系列转录因子等。文章首先对参与后生动物体轴发育的wnt基因家族的起源与进化关系做一简要分析,并进一步就经典的Wnt/β-catenin通路与后口动物的海胆、文昌鱼、斑马鱼、爪蟾和小鼠等类群体轴极性的建立乃至整个体轴形成方面的研究进展做一综述。  相似文献   

18.
Branching morphogenesis in the lung serves as a model for the complex patterning that is reiterated in multiple organs throughout development. Beta-catenin and Wnt signaling mediate critical functions in cell fate specification and differentiation, but specific functions during branching morphogenesis have remained unclear. Here, we show that Wnt/beta-catenin signaling regulates proximal-distal differentiation of airway epithelium. Inhibition of Wnt/beta-catenin signaling, either by expression of Dkk1 or by tissue-specific deletion of beta-catenin, results in disruption of distal airway development and expansion of proximal airways. Wnt/beta-catenin functions upstream of BMP4, FGF signaling, and N-myc. Moreover, we show that beta-catenin and LEF/TCF activate the promoters of BMP4 and N-myc. Thus, Wnt/beta-catenin signaling is a critical upstream regulator of proximal-distal patterning in the lung, in part, through regulation of N-myc, BMP4, and FGF signaling.  相似文献   

19.
20.
Mutations in the genes ced-3 and ced-4 prevent almost all of the programmed cell deaths that occur during Caenorhabditis elegans development. To determine the sites of action of these two genes, we performed genetic mosaic analyses. We generated C. elegans animals that carried a free chromosomal duplication bearing either ced-3(+) or ced-4(+) in an otherwise homozygous ced-3 or ced-4 genetic background. We used other genes on the duplication as markers to identify genetic mosaic animals in which the duplication was present in some but not all cells. The patterns of cell death survivors in these mosaic animals indicated that the products of both ced-3 and ced-4 function within dying cells to cause cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号