首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Heading time in bread wheat ( Triticum aestivum L.) is determined by three characters – vernalization requirement, photoperiodic sensitivity and narrow-sense earliness (earliness per se) – which are involved in the phase transition from vegetative to reproductive growth. The wheat APETALA1 ( AP1 )-like MADS-box gene, wheat AP1 ( WAP1 , identical with VRN1 ), has been identified as an integrator of vernalization and photoperiod flowering promotion pathways. A MADS-box gene, SUPPRESSOR OF OVEREXPRESSION OF CO 1 ( SOC1 ) is an integrator of flowering pathways in Arabidopsis . In this study, we isolated a wheat ortholog of SOC1 , wheat SOC1 ( WSOC1 ), and investigated its relationship to WAP1 in the flowering pathway. WSOC1 is expressed in young spikes but preferentially expressed in leaves. Expression starts before the phase transition and is maintained during the reproductive growth phase. Overexpression of WSOC1 in transgenic Arabidopsis plants caused early flowering under short-day conditions, suggesting that WSOC1 functions as a flowering activator in Arabidopsis . WSOC1 expression is affected neither by vernalization nor photoperiod, whereas it is induced by gibberellin at the seedling stage. Furthermore, WSOC1 is expressed in transgenic wheat plants in which WAP1 expression is cosuppressed. These findings indicate that WSOC1 acts in a pathway different from the WAP1 -related vernalization and photoperiod pathways.  相似文献   

3.
The molecular basis of vernalization-induced flowering in cereals   总被引:5,自引:0,他引:5  
Genetic analyses have identified three genes that control the vernalization requirement in wheat and barley; VRN1, VRN2 and FT (VRN3). These genes have now been isolated and shown to regulate not only the vernalization response but also the promotion of flowering by long days. VRN1 is induced by vernalization and accelerates the transition to reproductive development at the shoot apex. FT is induced by long days and further accelerates reproductive apex development. VRN2, a floral repressor, integrates vernalization and day-length responses by repressing FT until plants are vernalized. A comparison of flowering time pathways in cereals and Arabidopsis shows that the vernalization response is controlled by different MADS box genes, but integration of vernalization and long-day responses occurs through similar mechanisms.  相似文献   

4.
植物非编码RNA调控春化作用的表观遗传   总被引:1,自引:0,他引:1  
Zhang SF  Li XR  Sun CB  He YK 《遗传》2012,34(7):829-834
在自然界中许多高等植物需要通过冬季的低温阶段实现从营养生长到生殖生长的时期转化,这一生物学过程称作春化作用。小麦(Triticum aestivum L.)和油菜(Brassica napus L.)等作物以种子为产品器官,生产上往往通过茬口安排和栽培措施使植株尽早通过春化作用,以促进花芽形成和花器官发育,而大白菜(B rapa ssp.pekinenesis)和甘蓝(B.oleracea)等作物以叶球等营养器官作为产品器官,生产上则设法避免低温引起的春化作用,以保证产品器官的充分生长。FLOWERING LOCUS C(FLC)作为一种重要的开花抑制蛋白负调控春化作用,参与植株从营养生长向生殖生长的转化过程。文章综述了春化中FLC表达受抑制主要通过低温诱导表达FLC基因区域的非编码RNA以及VRN1、VRN2、VIN3等蛋白参与介导组蛋白甲基化,从而在表观遗传上控制春化作用的进程和产品器官的正常发育。  相似文献   

5.
6.
Members of the grass subfamily Pooideae are characterized by their adaptation to cool temperate climates. Vernalization is the process whereby flowering is accelerated in response to a prolonged period of cold. Winter cereals are tolerant of low temperatures and flower earlier with vernalization, whereas spring cultivars are intolerant of low temperatures and flower later with vernalization. In the pooid grasses wheat (Triticum monococcum, Triticum aestivum) and barley (Hordeum vulgare), vernalization responsiveness is determined by allelic variation at the VERNALIZATION1 (VRN1) and/or VRN2 loci. To determine whether VRN1, and its paralog FRUITFULL2 (FUL2), are involved in vernalization requirement across Pooideae, we determined expression profiles for multiple cultivars of oat (Avena sativa) and wheat with and without cold treatment. Our results demonstrate significant up-regulation of VRN1 expression in leaves of winter oat and wheat in response to vernalization; no treatment effect was found for spring or facultative growth habit oat and wheat. Similar cold-dependent patterns of leaf expression were found for FUL2 in winter oat, but not winter wheat, suggesting a redundant qualitative role for these genes in the quantitative induction of flowering competency of oat. These and other data support the hypothesis that VRN1 is a common regulator of vernalization responsiveness within the crown pooids. Finally, we found that up-regulation of VRN1 in vegetative meristems of oat was significantly later than in leaves. This suggests distinct and conserved roles for temperate cereal grass VRN1/FUL-like genes, first, in systemic signaling to induce flowering competency, and second, in meristems to activate genes involved in the floral transition.  相似文献   

7.
植物由营养生长向生殖生长转变过程中光周期调控起着重要的作用。CONSTANS (CO) 是光周期途径中的特有基因,为探讨高羊茅FaCONSTANS (FaCO) 基因响应日照长短从而启动植物开花的机理,利用实时荧光定量qRT-PCR技术分析在长日照、短日照、持续光照、持续黑暗条件下FaCO基因的表达水平。构建过表达载体p1300-FaCO,利用农杆菌介导法遗传转化拟南芥,构建沉默载体p1300-FaCO-RNAi遗传转化高羊茅。结果表明,FaCO基因的表达受光周期调控,与生物钟控制的昼夜节律相关。在长日照条件下FaCO基因促进拟南芥开花,且恢复拟南芥突变体开花表型。RNAi沉默FaCO基因的高羊茅转基因植株晚花或者一直处于营养生长阶段。本研究初步探究高羊茅FaCO基因对开花过程的调控,这将有助于更进一步了解该基因的生物学功能。  相似文献   

8.
HvCO9 was characterized to elucidate the barley flowering control mechanisms and to investigate the functional diversification of the barley CONSTANS-like (CO-like) genes in flowering. HvCO9 was located on the same chromosome, 1HL, as Ppd-H2 (HvFT3), which is a positive regulator of short-day (SD) flowering. A phylogenetic analysis showed that HvCO9 was located on the same branch of the CO-like gene tree as rice Ghd7 and the barley and wheat VRN2 genes, which are all negative regulators of flowering. High level HvCO9 expressions were observed under SD conditions, whereas its expression levels were quite low under long-day (LD) conditions. HvCO9 expression correlated with HvFT1 and HvFT2 expression under SD conditions, although no clear effect of HvCO9 on HvFT3 expression, or vice versa, under SD conditions was observed. The over-expression of HvCO9 in rice plants produced a remarkable delay in flowering. In transgenic rice, the expression levels of the flowering-related Ehd1 gene, which is a target gene of Ghd7, and its downstream genes were suppressed, causing a delay in flowering. These results suggest that HvCO9 may act as a negative regulator of flowering under non-inductive SD conditions in barley; this activity is similar to that of rice Ghd7 under non-inductive LD conditions, but the functional targets of these genes may be different. Our results indicate that barley has developed its own pathways to control flowering by using homologous genes with modifications for the timing of expression. Further, it is hypothesized that each pathway may target different genes after gene duplication or species diversification.  相似文献   

9.
Zhu YX  Davies PJ 《Plant physiology》1997,113(2):631-637
Pea (Pisum sativum L.) lines G2 (dwarf) and NGB1769 (tall) (Sn Hr) produce flowers and fruit under long (LD) or short (SD) days, but senesce only under LD. Endogenous gibberellin (GA) levels were inversely correlated with photoperiod (over 9-18 h) and senescence: GA20 was 3-fold and GA1 was 10- to 11-fold higher in flowering SD G2 shoots, and the vegetative tissues within the SD apical bud contained 4-fold higher levels of GA20, as compared with the LD tissues. Prefloral G2 plants under both photoperiods had GA1 and GA20 levels similar to the flowering plants under LD. Levels of indole-3-acetic acid (IAA) were similar in G2 shoots in LD or SD; SD apical bud vegetative tissues had a slightly higher IAA content. Young floral buds from LD plants had twice as much IAA as under SD. In NGB1769 shoots GA1 decreased after flower initiation only under LD, which correlated with the decreased growth potential. We suggest that the higher GA1 content of G2 and NGB1769 plants under SD conditions is responsible for the extended vegetative growth and continued meristematic activity in the shoot apex. This and the increased IAA level of LD floral buds may play a role in the regulation of nutrient partitioning, since more photosynthate partitions of reproductive tissue under LD conditions, and the rate of reproductive development in LD peas is faster than under SD.  相似文献   

10.
11.

Background

Timothy is a long-day grass species well adapted for cultivation in northern latitudes. It produces elongating tillers not only in spring growth but also later in summer. As the quantity and quality of harvested biomass is dictated by canopy architecture and the proportion of stem-forming flowering tillers, the regulation of flowering is of great interest in forage grass production.

Methods

Canopy architecture, stem morphology and freezing tolerance of vernalized timothy were investigated in greenhouse and field experiments. The molecular control of development was examined by analysing the relationship between apex development and expression of timothy homologues of the floral inducer VRN1 and repressor VRN2.

Key Results

True stem formation and lignification of the sclerenchyma ring occur in both vernalized and regrowing stems irrespective of the developmental stage of the apex. The stems had, however, divergent morphology. Vernalization enhanced flowering, and the expression of the VRN1 homologue was elevated when the apex had passed into the reproductive stage. High VRN1 homologue expression was not associated with reduction in freezing tolerance and the expression coincided with increased levels of the floral repressor VRN2 homologue. Field experiments supported the observed linkage between the upregulation of the VRN1 homologue and the transition to the reproductive stage in vernalized tillers. The upregulation of putative VRN1 or VRN2 genes was restricted to vernalized tillers in the spring yield and, thus, not detected in non-vernalized tillers of the second yield; so-called regrowth.

Conclusions

The formation of a lignified sclerenchyma ring that efficiently reduces the digestibility of the stem was not related to apex development but rather to a requirement for mechanical support. The observed good freezing tolerance of reproductive timothy tillers could be one important adaptation mechanism ensuring high yields in northern conditions. Both VRN1 and VRN2 homologues required a vernalization signal for expression so the development of yield-forming tillers in regrowth was regulated independently of the studied genes.  相似文献   

12.
13.
The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase (mvp), was induced by nitrogen ion-beam treatment and was identified by its inability to transit from the vegetative to reproductive phase. In our previous study, we showed that WAP1 (wheat APETALA1) is a key gene in the regulatory pathway that controls phase transition from vegetative to reproductive growth in common wheat. WAP1 is an ortholog of the VRN1 gene that is responsible for vernalization insensitivity in einkorn wheat. The mvp mutation resulted from deletion of the VRN1 coding and promoter regions, demonstrating that WAP1/VRN1 is an indispensable gene for phase transition in wheat. Expression analysis of flowering-related genes in mvp plants indicated that wheat GIGANTIA (GI), CONSTANS (CO) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) genes either act upstream of or in a different pathway to WAP1/VRN1.  相似文献   

14.
15.

Background

In arabidopsis (Arabidopsis thaliana), FLOWERING LOCUS T (FT) and FLOWERING LOCUS C (FLC) play key roles in regulating seasonal flowering-responses to synchronize flowering with optimal conditions. FT is a promoter of flowering activated by long days and by warm conditions. FLC represses FT to delay flowering until plants experience winter.

Scope

The identification of genes controlling flowering in cereals allows comparison of the molecular pathways controlling seasonal flowering-responses in cereals with those of arabidopsis. The role of FT has been conserved between arabidopsis and cereals; FT-like genes trigger flowering in response to short days in rice or long days in temperate cereals, such as wheat (Triticum aestivum) and barley (Hordeum vulgare). Many varieties of wheat and barley require vernalization to flower but FLC-like genes have not been identified in cereals. Instead, VERNALIZATION2 (VRN2) inhibits long-day induction of FT-like1 (FT1) prior to winter. VERNALIZATION1 (VRN1) is activated by low-temperatures during winter to repress VRN2 and to allow the long-day response to occur in spring. In rice (Oryza sativa) a VRN2-like gene Ghd7, which influences grain number, plant height and heading date, represses the FT-like gene Heading date 3a (Hd3a) in long days, suggesting a broader role for VRN2-like genes in regulating day-length responses in cereals. Other genes, including Early heading date (Ehd1), Oryza sativa MADS51 (OsMADS51) and INDETERMINATE1 (OsID1) up-regulate Hd3a in short days. These genes might account for the different day-length response of rice compared with the temperate cereals. No genes homologous to VRN2, Ehd1, Ehd2 or OsMADS51 occur in arabidopsis.

Conclusions

It seems that different genes regulate FT orthologues to elicit seasonal flowering-responses in arabidopsis and the cereals. This highlights the need for more detailed study into the molecular basis of seasonal flowering-responses in cereal crops or in closely related model plants such as Brachypodium distachyon.Key words: Flowering, vernalization, photoperiod, day length, VRN1, VRN2, FLC, FT, cereals, arabidopsis, MADS  相似文献   

16.
为明确小麦春化基因的时空表达特性,以中国春和洛旱2号小麦品种为试验材料,利用半定量RT-PCR技术,分析了3个春化基因VERNALIZATION1(VRN1)、VRN2和VRN3的时空表达特性。结果表明,VRN1在中国春的三叶期叶片和根、灌浆期的茎秆和旗叶、花药、胚珠和发育的种子中均有不同程度的表达。在开花前,表达水平呈上升趋势,而花后呈降低的趋势,在干种子和萌发种子的胚芽中没有检测到表达;在洛旱2号中,除了在三叶期的叶片和根中没有检测到表达外,VRN1的表达特性与中国春有相同的趋势。VRN2只在三叶期的叶片和萌发种子的胚芽中表达,在其他检测的组织中没有表达;VRN3的表达与VRN1的时空表达特性相似,但在根中未检测到表达。这一结果为进一步分析普通小麦品种春化发育的分子调控机理提供了重要信息。  相似文献   

17.
An early flowering mutant of Arabidopsis, elf32-D was isolated from activation tagging screening. The mutant flowered earlier than wild type under both long day and short day conditions. The mutant phenotype was caused by overexpression of a Kunitz-type trypsin inhibitor gene (AtKTI1). The expression of AtKTI1 was detected in leaves, flowers, siliques and roots. In the vegetative state, no change of flowering integrator gene expression was observed for AtKTI1 overexpressing plants. In contrast, at the reproductive stage, its overexpression resulted in the down-regulation of FLC, a strong floral repressor which integrates the autonomous and vernalization pathways and also the up-regulation of FT and AP1, which are downstream floral integrator genes. It is probable that the AtKTI1 overexpression inhibits components of the flowering signaling pathway upstream of FLC, eventually regulating expression of FLC, or causing perturbations in plant metabolism and thus indirectly affecting flowering.  相似文献   

18.
Desiccation tolerance is a complex trait that is broadly but infrequently present throughout the evolutionary tree of life. Desiccation tolerance has played a significant role in land plant evolution, in both the vegetative and reproductive life history stages. In the land plants, the late embryogenesis abundant (LEA) gene families are involved in both abiotic stress tolerance and the development of reproductive propagules. They are also a major component of vegetative desiccation tolerance. Phylogenies were estimated for four families of LEA genes from Arabidopsis, Physcomitrella, and the desiccation tolerant plants Tortula ruralis, Craterostigma plantagineum, and Xerophyta humilis. Microarray expression data from Arabidopsis and a subset of the Physcomitrella LEAs were used to estimate ancestral expression patterns in the LEA families and to evaluate alternative hypotheses for the origins of vegetative desiccation tolerance in the flowering plants. The results contradict the idea that vegetative desiccation tolerance in the resurrection angiosperms Craterostigma and Xerophyta arose through the co-option of genes exclusively related to stress tolerance, and support the propagule-derived origin of vegetative desiccation tolerance in the resurrection plants.  相似文献   

19.
Flowering time is closely associated with grain yield in rice (Oryza sativa L.). In temperate regions, seasonal changes in day length (known as the photoperiod) are an important environmental cue for floral initiation. The timing of flowering is important not only for successful reproduction, but also for determining the ideal balance between vegetative growth and reproductive growth duration. Recent molecular genetics studies have revealed key flowering time genes responsible for photoperiod sensitivity. In this study, we investigated the effect of three recessive photoperiod-insensitive alleles, se13, hd1 and ghd7, on yield components in rice under Ehd1-deficient genetic background conditions to ensure vegetative growth of each line. We found that se13-bearing plants had fewer panicles, hd1-bearing plants showed decreased grain-filling percentage, and ghd7-bearing plants appeared to have fewer grains per panicle and fewer secondary branches. Our results indicate that the pleiotropic effects of photoperiod-insensitive genes on yield components are independent of short vegetative growth. This will provide critical information which can be used to create photoperiod-insensitive varieties that can be adapted to a wide range of latitudes.  相似文献   

20.
The genomes of grass family species have three paralogs of APETALA1/FRUITFULL (AP1/FUL)-like genes (FUL1, FUL2 and FUL3) that are derived from the FUL lineage. In this study, we focus on the different roles of the wheat AP1/FUL-like genes, WFUL1 (identical to VRN1), WFUL2 and WFUL3, during the transition from vegetative to reproductive growth. Sequence analysis indicated that there was a high level of variability in the amino acid sequence of the C-domain among three WFUL genes. Expression analyses using the spring wheat cultivar Chinese Spring indicated that WFUL1/VRN1 was expressed in leaves as well as spike primordia of non-vernalized plants at the vegetative stage just before phase transition, while WFUL2 and WFUL3 were not expressed in leaves. This result indicates that WFUL1/VRN1 performs a distinct role in leaves before phase transition. In young spikes, WFUL1/VRN1 and WFUL3 were expressed in all developing floral organs, whereas WFUL2 expression was restricted in the floral organs to the lemma and palea. Furthermore, yeast two-hybrid and three-hybrid analyses revealed that WFUL2, but not WFUL1/VRN1 or WFUL3, interacted with class B and class E proteins. These results suggest that WFUL2 of wheat has class A functions in specifying the identities of floral meristems and outer floral organs (lemma and palea) through collaboration with class B and class E genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号