首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the bacterium Azospirillum brasilense jointly immobilized with Chlorella vulgaris or C. sorokiniana in alginate beads on total carbohydrates and starch was studied under dark and heterotrophic conditions for 144h in synthetic growth medium supplemented with either d-glucose or Na-acetate as carbon sources. In all treatments, enhanced total carbohydrates and starch content per culture and per cell was obtained after 24h; only jointly immobilized C. vulgaris growing on d-glucose significantly increased total carbohydrates and starch content after 96h. Enhanced accumulation of carbohydrate and starch under jointly immobilized conditions was variable with time of sampling and substrate used. Similar results occurred when the microalgae was immobilized alone. In both microalgae growing on either carbon sources, the bacterium promoted accumulation of carbohydrates and starch; when the microalgae were immobilized alone, they used the carbon sources for cell multiplication. In jointly immobilized conditions with Chlorella spp., affinity to carbon source and volumetric productivity and yield were higher than when Chlorella spp. were immobilized alone; however, the growth rate was higher in microalgae immobilized alone. This study demonstrates that under heterotrophic conditions, A. brasilense promotes the accumulation of carbohydrates in two strains Chlorella spp. under certain time-substrate combinations, producing mainly starch. As such, this bacterium is a biological factor that can change the composition of compounds in microalgae in dark, heterotrophic conditions.  相似文献   

2.
Biofuels from microalgae is now a hot issue of great potential. However, achieving high starch productivity with photoautotrophic microalgae is still challenging. A feasible approach to enhance the growth and target product of microalgae is to conduct mixotrophic cultivation. The appropriate acetate addition combined with CO2 supply as dual carbon sources (i.e., mixotrophic cultivation) could enhance the cell growth of some microalgae species, but the effect of acetate‐mediated mixotrophic culture mode on carbohydrate accumulation in microalgae remains unclear. Moreover, there is still lack of the information concerning how to increase the productivity of carbohydrates from microalgae under acetate‐amended mixotrophic cultivation and how to optimize the engineering strategies to achieve the goal. This study was undertaken to develop an optimal acetate‐contained mixotrophic cultivation system coupled with effective operation strategies to markedly improve the carbohydrate productivity of Chlorella sorokiniana NIES‐2168. The optimal carbohydrate productivity of 695 mg/L/d was obtained, which is the highest value ever reported. The monosaccharide in the accumulated carbohydrates is mainly glucose (i.e., 85–90%), which is very suitable for bio‐alcohols fermentation. Hence, by applying the optimal process developed in this study, C. sorokiniana NIES‐2168 has a high potential to serve as a feedstock for subsequent biofuels conversion.  相似文献   

3.
Heterotrophic growth of microalgae presents significant economic advantages over the more common autotrophic cultivation. The efficiency of growth and nitrogen, phosphorus, and glucose uptake from synthetic wastewater was compared under heterotrophic, autotrophic, and mixotrophic regimes of Chlorella vulgaris Beij. immobilized in alginate beads, either alone or with the bacterium Azospirillum brasilense. Heterotrophic cultivation of C. vulgaris growing alone was superior to autotrophic cultivation. The added bacteria enhanced growth only under autotrophic and mixotrophic cultivations. Uptake of ammonium by the culture, yield of cells per ammonium unit, and total volumetric productivity of the culture were the highest under heterotrophic conditions when the microalga grew without the bacterium. Uptake of phosphate was higher under autotrophic conditions and similar under the other two regimes. Positive influence of the addition of A. brasilense was found only when light was supplied (autotrophic and mixotrophic), where affinity to phosphate and yield per phosphate unit were the highest under heterotrophic conditions. The pH of the culture was significantly reduced in all regimes where glucose was consumed, similarly in heterotrophic and mixotrophic cultures. It was concluded that the heterotrophic regime, using glucose, is superior to autotrophic and mixotrophic regimes for the uptake of ammonium and phosphate. Addition of A. brasilense positively affects the nutrient uptake only in the two regimes supplied with light.  相似文献   

4.
In synthetic wastewater, growth and phosphorus absorption by two species of microalgae, Chlorella sorokiniana and Chlorella vulgaris, and in domestic wastewater by C. sorokiniana significantly enhanced after a starvation period of 3 days in saline solution, combined with co-immobilization with the microalgae growth-promoting bacterium (MGPB) Azospirillum brasilense Cd in alginate beads. Starvation of 5 days negatively affected the subsequent growth of C. vulgaris, but not of C. sorokiniana in fresh wastewater. Starvation of immobilized cultures of microalgae separately or microalgae with bacteria, followed by returning the immobilized cultures to the same wastewater did not enhance phosphorus absorption. However, a starvation period followed by subsequent submersion of the cultures in fresh wastewater allowed the continuation of phosphorus absorption. The best phosphorus removal treatment from a batch of synthetic or domestic wastewater was with tandem treatments of wastewater treatment with pre-starved, co-immobilized microalgae and replacement of this culture, after one cycle of phosphorus removal, with a new, similarly starved culture. This combination treatment with two cultures was capable of removing up to 72% of phosphorus from the wastewater. There was a direct correlation between the initial load of phosphorus in the domestic wastewater and the efficiency level of removal, being highest at higher phosphorus loads in co-immobilized cultures. This occurred for both immobilized and co-immobilized cultures. Further, the results showed that negative effects of starving the microalgae were mitigated by the application of the MGPB A. brasilense Cd. This is the first report of this capacity in Azospirillum sp. on a single-cell plant. This study showed that starvation periods, combined with co-immobilization with MGPB, have synergistic effects on absorption of phosphorus from wastewater and merits consideration in designing future biological treatments of wastewater.  相似文献   

5.
Three strains of the freshwater microalgae used for wastewater treatment, Chlorella vulgaris and Chlorella sorokiniana co-immobilized separately in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense Cd, resulted in significant changes in microalgal-population size, cell size, cell cytology, pigment, lipid content, and the variety of fatty acids produced in comparison with microalgae immobilized in alginate without the bacterium. Cells of C. vulgaris UTEX 2714 did not change in size, but the population size within the beads significantly increased. On the other hand, C. vulgaris UTEX 395 cells grew 62% larger, but their numbers did not increase. The population of C. sorokiniana UTEX 1602 increased, but not their cell size. The content of pigments chlorophyll a and b, lutein, and violoaxanthin increased in all microalgal species. The lipid content also significantly increased in all three strains, and the number of different fatty acids in the microalgae increased from four to eight. This study indicates that the microalgae-growth-promoting bacterium induced significant changes in the metabolism of the microalgae.  相似文献   

6.
Growth of and the capacity to take up nitrogen in the freshwater microalgae Chlorella vulgaris were studied while varying the concentrations of ammonium and nitrate, the pH and the source of carbon in a synthetic wastewater growth medium when co-immobilized in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Analyses of 29 independent experiments showed that co-immobilization of the microalgae with A. brasilense could result in two independent phenomena directly affected by cultivation factors, such as nitrogen species, pH and presence of a carbon source. First, growth of the microalgal population increased without an increase in the capacity of the single cells to take up nitrogen, or second, the capacity of cells to take up nitrogen increased without an increase of the total microalgal population. These phenomena were dependent on the population density of the microalgae, which was in turn affected by cultivation factors. This supports the conclusion that the size of the microalgal population controls the uptake of nitrogen in C. vulgaris cells - the higher the population (regardless the experimental parameters), the less nitrogen each cell takes up.  相似文献   

7.
Enzymatic activities of glutamate dehydrogenase (GDH) and glutamine synthetase (GS) participating in the nitrogen metabolism and related ammonium absorption were assayed after the microalga Chlorella vulgaris Beij. was jointly immobilized with the microalgae‐growth‐promoting bacterium Azospirillum brasilense. At initial concentrations of 3, 6, and 10 mg · L?1 NH4+, joint immobilization enhances growth of C. vulgaris but does not affect ammonium absorption capacity of the microalga. However, at 8 mg · L?1 NH4+, joint immobilization enhanced ammonium absorption by the microalga without affecting the growth of the microalgal population. Correlations between absorption of ammonium per cell and per culture showed direct (negative and positive) linear correlations between these parameters and microalga populations at 3, 6, and 10 mg · L?1 NH4+, but not at 8 mg · L?1 NH4+, where the highest absorption of ammonium occurred. In all cultures, immobilized and jointly immobilized, having the four initial ammonium concentrations, enzymatic activities of Chlorella are affected by A. brasilense. Regardless of the initial concentration of ammonium, GS activity in C. vulgaris was always higher when jointly immobilized and determined on a per‐cell basis. When jointly immobilized, only at an initial concentration of 8 mg · L?1 NH4+ was GDH activity per cell higher.  相似文献   

8.
Coimmobilization of the freshwater microalga Chlorella vulgaris and the plant-growth-promoting bacterium Azospirillum brasilense in small alginate beads resulted in a significantly increased growth of the microalga. Dry and fresh weight, total number of cells, size of the microalgal clusters (colonies) within the bead, number of microalgal cells per cluster, and the levels of microalgal pigments significantly increased. Light microscopy revealed that both microorganisms colonized the same cavities inside the beads, though the microalgae tended to concentrate in the more aerated periphery while the bacteria colonized the entire bead. The effect of indole-3-acetic acid addition to microalgal culture prior to immobilization of microorganisms in alginate beads partially imitated the effect of A. brasilense. We propose that coimmobilization of microalgae and plant-growth-promoting bacteria is an effective means of increasing microalgal populations within confined environments.  相似文献   

9.
Cell‐cell interaction in the eukaryote‐prokaryote model of the unicellular, freshwater microalga Chlorella vulgaris Beij. and the plant growth‐promoting bacterium Azospirillum brasilense, when jointly immobilized in small polymer alginate beads, was evaluated by quantitative fluorescence in situ hybridization (FISH) combined with SEM. This step revealed significant changes, with an increase in the populations of both partners, cluster (mixed colonies) mode of colonization of the bead by the two microorganisms, increase in the size of microalgae‐bacterial clusters, movement of the motile bacteria cells toward the immotile microalgae cells within solid matrix, and formation of firm structures among the bacteria, microalgae cells, and the inert matrix that creates a biofilm. This biofilm was sufficiently strong to keep the two species attached to each other, even after eliminating the alginate support. This study showed that the common structural phenotypic interaction of Azospirillum with roots of higher plants, via fibrils and sheath material, is also formed and maintained during the interaction of this bacterium with the surface of rootless single‐cell microalgae.  相似文献   

10.
Light effect on cultures of microalgae has been studied mainly on single species cultures. Cyanobacteria have photosynthetic pigments that can capture photons of wavelengths not available to chlorophylls. A native Louisiana microalgae (Chlorella vulgaris ) and cyanobacteria (Leptolyngbya sp.) co‐culture was used to study the effects of light quality (blue–467 nm, green–522 nm, red–640 nm and white–narrow peak at 450 nm and a broad range with a peak at 550 nm) at two irradiance levels (80 and 400 μmol m?2 s?1) on the growth, species composition, biomass productivity, lipid content and chlorophyll‐a production. The co‐culture shifted from a microalgae dominant culture to a cyanobacteria culture at 80 μmol m?2 s?1. The highest growth for the cyanobacteria was observed at 80 μmol μmol m?2 s?1 and for the microalgae at 400 μmol m?2 s?1. Red light at 400 μmol m?2 s?1 had the highest growth rate (0.41 d?1), biomass (913 mg L?1) and biomass productivity (95 mg L?1 d?1). Lipid content was similar between all light colors. Green light had the highest chlorophyll‐a content (1649 μg/L). These results can be used to control the species composition of mixed cultures while maintaining their productivity.  相似文献   

11.
Microalgae are discussed as an alternative source for the production of biofuels. The lipid content compared to cultivation time of used species is the main reason for any choice of a special strain. This paper reviews more analytical data of 38 screened microalgae strains. After the cultivation period, total content of lipids was analysed. The extracted fatty acids were quantified as fatty acid methyl esters by GC analysis. The amino acids were analysed by HPLC. Chlorella sp., Chlorella saccharophila, Chlorella minutissima and Chlorella vulgaris were identified as species with the highest productivity of fatty acids relevant to transesterification reactions. The components were mainly linoleic acid, palmitic acid and oleic acid. To increase productivity of highly saturated fatty acids, cultivation parameters light intensity and temperature were varied. In this manner, the ideal conditions for biodiesel production were defined in this publication.  相似文献   

12.
We have conducted a study of the potential use of drag-reducing biopolymers produced by marine microalgae for engineering applications. Several marine microalgae species were tested for their production of drag-reducing polysaccharides in large custom-designed plate bioreactors. Promising species (such as Porphyridium cruentum, Rhodella maculata, Schizochlamydella capsulata and Chlorella stigmatophora) were cultured for periods of time ranging from a few weeks to over 6 months. The basic drag-reducing ability of the polysaccharides was established by comparing their drag reduction effectiveness at various concentrations in water. The algal polysaccharide mass productivity was also measured per unit area of bioreactor’s illuminated surface. Finally, an all-inclusive criterion, the volumetric production of drag-reducing water giving a set level of drag reduction was quantified, and led us to a ranking of the tested species in order of productivity relevant to implementation. Some aspects of polysaccharide production by aged cultures were investigated as well. We also quantified the drag-reducing effectiveness of intracellular polysaccharides, and visualized the presence of exopolymer particles in the medium.  相似文献   

13.
五种淡水微藻的适宜培养温度和光照强度   总被引:3,自引:0,他引:3  
从淡水中分离得到绿球藻(Chlorococcum sp.)SHOU-F3、纤维藻(Ankistrodesmus sp.)SHOU-F33、小球藻(Chlorella sp.)SHOU-F46、空星藻(Coelastrum sphaericum)SHOU-F10和栅藻(Scenedesmus sp.)SHOU-FX,分别在光照培养箱中研究了温度、光照强度对5种微藻增殖的影响,并分析了5种微藻的细胞组成。结果表明:绿球藻SHOU-F3、纤维藻SHOU-F33、小球藻SHOU-F46、空星藻SHOU-F10和栅藻SHOU-FX的最适生长温度分别为29.8、23.5、31.4、34.4和24.7℃;最适光照强度分别为16、119、42、82和106μmol·m-2·s-1;在适宜培养条件下,绿球藻SHOU-F3的色素、蛋白以及总糖的百分含量最高,纤维藻SHOU-F33的脂肪百分含量最高。  相似文献   

14.
The aim of this research was to study the impact of nitrogen starvation on the production of two major secondary metabolites, fatty acids and carbohydrates, in two microalgae: Nannochloropsis sp. and Haematococcus pluvialis. The major response to nitrogen starvation in both algae occurred within the first 2 days, accompanied by a sharp reduction in chlorophyll content. However, the pattern of the response differed between the two microalgae. In H. pluvialis, the first response to nitrogen starvation was intensive production of carbohydrates, accumulating to up to 63% of dry weight by day 1; on day 2, the total carbohydrate content decreased and was partially degraded, possibly to support fatty acid synthesis. Under these conditions, H. pluvialis accumulated up to 35% total fatty acids in the biomass. In Nannochloropsis sp., the immediate and major response, which was maintained throughout the entire period of exposure to stress, was production of fatty acids, accumulating up to 50% of dry weight, while carbohydrate content in the biomass remained stable at 18%. In addition, we tested the effect of the lipid-synthesis inhibitor sesamol, known to inhibit malic enzyme, on the balance between total fatty acid and carbohydrate contents in H. pluvialis and Nannochloropsis sp. In both cultures, sesamol inhibited fatty acid accumulation, but the carbohydrate content was reduced as well, albeit to a lesser extent. These findings demonstrate the complexity of the stress-response and the potential link between fatty acid and carbohydrate synthesis.  相似文献   

15.
Zoogloea ramigera 115 synthesized large amounts of matrix polymer from fructose, galactose, glucose, lactose, mannose, soluble starch, and sucrose when these carbohydrates were used as supplements to a chemically defined medium. All of them supported polymer synthesis to the extent that cultures thickened to a gel. Concentration of carbohydrate nutrients in the range 0.5 to 2.0% was not a critical factor in determining eventual total thickening to a gel, except in relation to the incubation time required. Glucose disappeared from the growth medium rapidly and correlated with increasing cell growth and poly-beta-hydroxybutyrate (PHB) accumulation. PHB concentration decreased as extracellular polymer was synthesized, suggesting a link between PHB and extracellular polymer production.  相似文献   

16.
In the summer of 2003, a microalga strain was isolated from a massive green microalgae bloom in wastewater stabilization ponds at the treatment facility of La Paz, B.C.S., Mexico. Prevailing environmental conditions were air temperatures over 40 degrees C, water temperature of 37 degrees C, and insolation of up to 2400 micromol m2 s(-1) at midday for several hours at the water surface for four months. The microalga was identified as Chlorella sorokiniana Shih. et Krauss, based on sequencing its entire 18S rRNA gene. In a controlled photo-bioreactor, this strain can grow to high population densities in synthetic wastewater at temperatures of 40-42 degrees C and light intensity of 2500 micromol m2 s(-1) for 5h daily and efficiently remove ammonium from the wastewater under these conditions better than under normal lower temperature (28 degrees C) and lower light intensity (60 micromol m2 s(-1)). When co-immobilized with the bacterium Azospirillum brasilense that promotes growth of microalgae, the population of microalga grew faster and removed even more ammonium. Under exposure to extreme growth conditions, the quantity of four photosynthetic pigments increased in the co-immobilized cultures. This strain of microalga has potential as a wastewater treatment agent under extreme conditions of temperature and light intensity.  相似文献   

17.
Microalgae have higher productivity of biomass than the conventional crops of fuel and are therefore, considered a potential biofuel source. Lipid, an important precursor of biodiesel, can be overproduced in microalgae by nitrogen deprivation. During nitrogen deficiency, radicals are overproduced, and the antioxidant levels are insufficient to counteract the radicals. Thus, the increase in cellular oxidative stress level, consequently acts as a stimulus for lipid accumulation. Lipid accumulation requires an excess of acetyl CoA and NADPH that is made possible by the following mechanism. Glycolysis upregulation overproduces pyruvate, which could be further transformed into acetyl CoA by the pyruvate dehydrogenase complex; while the upregulation of the oxidative pentose phosphate cycle generates a high amount of NADPH. In addition to lipid overproduction, the lack of nitrogen often causes the accumulation of carbohydrates in selected species of microalgae, which could be used to generate biogas and bioethanol from the defatted biomass. By providing details on the differential regulation of the biochemical pathways leading to lipid and carbohydrate accumulation in nitrogen starved microalgae, the review opens up new possibilities in the microalgal biofuel production.  相似文献   

18.
富油能源微藻的筛选及产油性能评价   总被引:3,自引:0,他引:3  
为了筛选具有产油潜力的能源微藻,以实验室保藏的20株淡水和海洋微藻(绿藻门18株,真眼点藻纲1株,硅藻纲1株)为研究对象,利用光径为3 cm柱状光生物反应器通气分批培养,通过测定微藻培养物的生物量和总脂含量等指标,从中筛选生长速度快、生物量和总脂含量高的微藻。结果表明:20株微藻的生物量和总脂含量分别在1.81~7.88g/L和16.0%~55.9% dw(% Dry weight)之间,筛选得到具有产油潜力的微藻9株,分别是栅藻(Scenedesmus sp.)(6.34g/L,55.9% dw)、麻织绿球藻(Chlorococcum tatrense)(5.93g/L,46.9% dw)、眼点拟微绿球藻(Nannochloropsis oculata)(7.88g/L,35.0% dw)、油面绿球藻(Chlorococcum oleofaciens)(5.58g/L,45.9% dw)、多形拟绿球藻(Pseudochlorococcum polymorphum)(6.10g/L,40.0% dw)、八月衣藻(Chlamydomonas augustae)(5.78g/L,40.5% dw)、椭圆小球藻(Chlorella ellipsoidea)(5.56g/L,40.7%dw)、椭圆绿球藻(Chlorococcum ellipsoideum)(5.41g/L,38.0% dw)、雪绿球藻(Chlorococcum nivale)(5.55g/L,36.3% dw),其中最具产业化潜力的微藻为栅藻(Scenedesmus sp.),其总脂收获量和单位体积总脂产率分别为3.5 g/L和218.7mg/L·d。  相似文献   

19.
Conditions for proline uptake and utilization by Chlorella pyrenoidosa Chick are described. Proline is taken up by growing cultures during late log phase growth after depletion of glucose from the medium. However, proline uptake by stationary phase cultures requires the presence of glucose in the medium. The results are consistent with the interpretation that some carbohydrate is required for proline uptake but proline uptake is inhibited by the accumulation of intracellular carbohydrates.  相似文献   

20.
We describe a methodology to investigate the potential of given microalgae species for biodiesel production by characterizing their productivity in terms of both biomass and lipids. A multi-step approach was used: determination of biological needs for macronutrients (nitrate, phosphate and sulphate), determination of maximum biomass productivity (the “light-limited” regime), scaling-up of biomass production in photobioreactors, including a theoretical framework to predict corresponding productivities, and investigation of how nitrate starvation protocol affects cell biochemical composition and triggers triacylglycerol (TAG) accumulation. The methodology was applied to two freshwater strains, Chlorella vulgaris and Neochloris oleoabundans, and one seawater diatom strain, Cylindrotheca closterium. The highest total lipid content was achieved with N. oleoabundans (25-37% of DW), while the highest TAG content was found in C. vulgaris (11-14% of DW). These two species showed similar TAG productivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号