首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bredesen DE 《Aging cell》2004,3(5):255-259
Summary Aging and lifespan determination have been viewed, in the most well-accepted theories, as nonprogrammatic, and are thought to result from the evolutionary selection for early fitness at the expense of late survival. Here, recent data implicating potentially programmatic aspects of aging and lifespan determination are discussed, and analogies between programmed cell death and programmed organismal death are offered. It is hoped that the recognition of at least the possibility of a programmatic aspect, or aspects, to the determination of longevity and the process of aging will help to optimize our chances to identify appropriate therapeutic targets both for longevity enhancement and disease prevention.  相似文献   

2.
3.
4.
5.
1. We collated information from the literature on life history traits of the roach (a generalist freshwater fish), and analysed variation in absolute fecundity, von Bertalanffy parameters, and reproductive lifespan in relation to latitude, using both linear and non-linear regression models. We hypothesized that because most life history traits are dependent on growth rate, and growth rate is non-linearly related with temperature, it was likely that when analysed over the whole distribution range of roach, variation in key life history traits would show non-linear patterns with latitude.
2. As fecundity depends strongly on length, and the length structure of females varied among populations, latitudinal patterns in fecundity were examined based on residuals from the length–fecundity relationship. The reproductive lifespan of roach was estimated as the difference between age at maturity and maximum age of females in each population.
3. The three life history traits of roach analysed all varied among populations and were non-linearly related to latitude. Only the relationship between reproductive lifespan and latitude was a better fit to a linear that to a quadratic model, although Loess smoothing curves revealed that this relationship was actually closer to biphasic than linear in form. A latitude of 50°N formed a break point in all three life history traits.
4. The negative relationships we have described between (i) fecundity and reproductive lifespan and (ii) fecundity and egg mass suggest that lower fecundity is compensated for by longer lifespan, while lower fecundity is compensated for by an increased egg mass, when analysed independently of location.  相似文献   

6.
Abstract. 1. Understanding dispersal patterns that enable small, spatially isolated populations to survive in fragmented landscapes has become an important issue in conservation biology and landscape management. However, for most of the species of interest it is not known whether dispersing individuals navigate or follow systematic search strategies, as opposed to moving randomly. 2. Recently it was shown that individuals of the butterfly species Maniola jurtina do not seek resources by means of random flight. If true, this may be problematic for existing metapopulation models, including those based on the evolution of dispersal rates in metapopulations. 3. The study tested to what extent the non‐random dispersal patterns described in the literature can explain M. jurtina fluxes in its natural habitat. 4. A model based on literature assumptions of M. jurtina movements is presented in the work reported here, and its predictions are compared with 2 years of capture–recapture data on its fluxes in two landscapes. 5. The model provides a good fit to the data and gives better predictions than the model based only on patch sizes and distances between patches. 6. Thus, if data are available about the actual landscape under consideration, the model should be preferred to simpler approaches; however, in general theoretical considerations the simple approach based on patch size and the degree of its isolation will retain its value.  相似文献   

7.
8.
The honeybee has an invaluable economic impact and is a model for studying immunity, development and social behavior. The recent sequencing and annotation of the honeybee genome facilitates the study of its hemolymph, which reflects the physiological condition and mediates immune responses. We aimed at making a proteomic reference map of honeybee hemolymph and compared gel‐free and gel‐based techniques. One hundered and four 2‐DE spots corresponding to 62 different proteins were identified. Eight identical 2‐DLC experiments resulted in the identification of 32 unique proteins. One repeat was clearly not representative for the potential of the given 2‐DLC setup. Only 27% of the identified hemolymph proteins were found by both techniques. In addition, we found proteins of three different viruses which creates possibilities for biomarker design. Future hemolymph studies will benefit from this work.  相似文献   

9.
Recent studies have demonstrated male mate choice for female ornaments in species without sex-role reversal. Despite these empirical findings, little is known about the adaptive dynamics of female signalling, in particular the evolution of male mating preferences. The evolution of traits that signal mate quality is more complex in females than in males because females usually provide the bulk of resources for the developing offspring. Here, we investigate the evolution of male mating preferences using a mathematical model which: (i) specifically accounts for the fact that females must trade-off resources invested in ornaments with reproduction; and (ii) allows male mating preferences to evolve a non-directional shape. The optimal adaptive strategy for males is to develop stabilizing mating preferences for female display traits to avoid females that either invests too many or too few resources in ornamentation. However, the evolutionary stability of this prediction is dependent upon the level of error made by females when allocating resources to either signal or fecundity.  相似文献   

10.
The recent finding that the human version of a neurodevelopmental enhancer of the Wnt receptor Frizzled 8 (FZD8) gene alters neural progenitor cell cycle timing and brain size is a step forward to understanding human brain evolution. The human brain is distinctive in terms of its cognitive abilities as well as its susceptibility to neurological disease. Identifying which of the millions of genomic changes that occurred during human evolution led to these and other uniquely human traits is extremely challenging. Recent studies have demonstrated that many of the fastest evolving regions of the human genome function as gene regulatory enhancers during embryonic development and that the human‐specific mutations in them might alter expression patterns. However, elucidating molecular and cellular effects of sequence or expression pattern changes is a major obstacle to discovering the genetic bases of the evolution of our species. There is much work to do before human‐specific genetic and genomic changes are linked to complex human traits. Also watch the Video Abstract .  相似文献   

11.
The mechanisms that regulate skin pigmentation have been the subject of intense research in recent decades. In contrast with melanin biogenesis and transport within melanocytes, little is known about how melanin is transferred and processed within keratinocytes. Several models have been proposed for how melanin is transferred, with strong evidence supporting coupled exo/endocytosis. Recently, two reports suggest that upon internalization, melanin is stored within keratinocytes in an arrested compartment, allowing the pigment to persist for long periods. In this commentary, we identify a striking parallelism between melanin processing within keratinocytes and the host‐pathogen interaction with Plasmodium, opening new avenues to understand the complex molecular mechanisms that ensure skin pigmentation and photoprotection.   相似文献   

12.
13.
Annual plants in unpredictable environments maintain dormant seeds to avoid extinction. Here, we present results for four desert annual species suggesting that germination rates are variable even in the absence of abiotic cues. Namely, seeds produced in a copious year had lower germination rates than seeds produced in drought years. Inspired by our data, we have extended previous bet-hedging models by including a structured seed bank. With density-dependence, the ESS (environmental stable strategy) involved a negative relationship between seed yield and subsequent germination probability. We suggest that heterogeneous germination rates are selected for by competition among seedlings after years with high seed production. In summary, our findings are suggestive of an intriguingly simple and effective mechanism that may allow annual plants to partly predict their future success.  相似文献   

14.
15.
The breakdown of cellular components via autophagy is crucial for cellular homeostasis. In this issue of The EMBO Journal, Niso‐Santano et al ( 2015 ) report the important observation that feeding cells with saturated or unsaturated fatty acids triggers mechanistically distinct autophagic responses. Feeding cells saturated fatty acid induced the canonical, BECN1/PI3K‐dependent autophagy pathway. Conversely, the unsaturated fatty acid oleate triggered autophagic responses that were independent of the BECN1/PI3K complex, but that required a functional Golgi system.  相似文献   

16.
17.
Interactions with parasites may promote the evolution of disassortative mating in host populations as a mechanism through which genetically diverse offspring can be produced. This possibility has been confirmed through simulation studies and suggested for some empirical systems in which disassortative mating by disease resistance genotype has been documented. The generality of this phenomenon is unclear, however, because existing theory has considered only a subset of possible genetic and mating scenarios. Here we present results from analytical models that consider a broader range of genetic and mating scenarios and allow the evolution of non-random mating in the parasite as well. Our results confirm results of previous simulation studies, demonstrating that coevolutionary interactions with parasites can indeed lead to the evolution of host disassortative mating. However, our results also show that the conditions under which this occurs are significantly more fickle than previously thought, requiring specific forms of infection genetics and modes of non-random mating that do not generate substantial sexual selection. In cases where such conditions are not met, hosts may evolve random or assortative mating. Our analyses also reveal that coevolutionary interactions with hosts cause the evolution of non-random mating in parasites as well. In some cases, particularly those where mating occurs within groups, we find that assortative mating evolves sufficiently to catalyze sympatric speciation in the interacting species.  相似文献   

18.
All aspects of cellular biology affect the process of regulated cell death, or apoptosis, and disruption of this process is a causative event in many diseases. Therefore, a comprehensive understanding of all pathways that regulate apoptosis would increase our knowledge of basic cellular functions, as well as the etiologies of many diseases. In turn, we may be able to use this knowledge to better treat patients with diseases, including cancer. Although the basic signaling pathway that regulates apoptosis has been known for over 10 years, we still have much to learn about the upstream signaling components that can directly regulate the core apoptosis machinery. The focus of this review will be to direct attention to non-canonical regulators of the BCL2-family of proteins, especially our void of understanding of such interactions, and the controversy that surrounds some such interactions.  相似文献   

19.
The liver stands in a unique position between the gastrointestinal tract and systemic venous system. Its constant exposure to food antigens, bacterial products and potential pathogens through the mesenteric circulation, requires the liver to maintain tolerogenic capabilities while preserving the means to mount effective immune responses. The liver has the unique ability amongst solid organs, to activate na?ve CD8+ T lymphocytes in an antigen-specific manner. However, this activation can be inefficient and lead to apoptosis. This phenomenon is believed to be involved in both, the development of oral tolerance and the induction of tolerance in liver allografts. The liver is the target of both autoimmune diseases and of chronic viral infections and its unique tolerogenic environment has frequently been suggested as a factor in the development of these diseases. A better grasp of the liver's unique immunological processes would lead to a better understanding of immune tolerance mechanisms and their role in the development of autoimmune diseases and chronic viral infections.  相似文献   

20.
Coreen Forbes  Edd Hammill 《Oikos》2013,122(12):1662-1668
The total effect of predators on prey is a combination of direct consumption, and non‐consumptive effects (NCEs), such as predator‐induced changes to prey morphology, behaviour and life history. Past research into NCEs has tended to focus on pair‐wise interactions between predators and prey, while in natural ecosystems, species exist in complex communities with several trophic levels made up of multiple autotrophic and heterotropic species. To address how predator NCEs alter the photosynthetic and heterotrophic components of communities, we exposed microbial microcosms to one of three predator treatments: live predators (full predator effect), freeze‐killed predators (NCEs only) or no predators (control), and incubated them under either 12 h:12 h light:dark conditions or continual darkness. Under 12 h:12 h light:dark conditions, NCEs‐only communities never differed from predator‐free communities, but differed from live predator communities. Under conditions of continual darkness, the structure of NCEs‐only communities differed from predator‐free controls, but not from live predator communities, suggesting NCEs can be strong enough to structure communities. Predation threat may cause certain prey to induce defences, such as reductions in movement, which make them less competitive in a community setting. This reduction in competitive ability could lead to these species being driven to extinction through interspecific competition, resulting in similar communities to those in which live predators are present. Heterotrophic species whose rates of resource acquisition depend on movement rates may be affected to a greater extent than autotrophs by predator‐induced reductions in movement, accounting for our observed differences in predator NCEs in ‘dark’ and ‘light’ communities. Our results suggest that the community‐level consequences of fear are greater in the dark. Synthesis Predators affect prey through consumptive and non‐consumptive effects (NCEs) such as alterations to prey behaviour, morphology, and life history. However, predators and prey do not exist in isolated pairs, but in complex communities where they interact with many other species. Using a long term study (>10 predator generations), we show that predator NCEs alone can alter community structure under conditions of darkness, but not in a 12h:12h light:dark cycle. Our results demonstrate for the first time that although the community‐level consequences of predator NCEs may be dramatic, they depend upon the abiotic conditions of the ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号