首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
While recent work has assessed how environmental and managerial changes influence elephant welfare across multiple zoos, few studies have addressed the effects of management changes within a single institution. In this paper, we examine how management changes related to social structure and diet affect the behavior of a group of zoo elephants over a 23‐month period while also considering underlying factors, such as time of day, hormonal cycle, and individual differences. We recorded individual behaviors using 2‐min scan samples during 60‐min sessions. We analyzed behavioral changes across several study variables using generalized linear mixed models. We found that increasing browse can improve opportunities for foraging throughout the day but may not be sufficient to reduce repetitive behaviors. We observed that increasing group size and integration of bulls with cows can lead to increased social interaction in African elephants. Our results highlight the importance of using multiple management alterations to address elephant welfare, and considering environmental factors, when making management decisions.  相似文献   

2.
Effects of recent experience on foraging decisions by bumble bees   总被引:2,自引:0,他引:2  
The temporal and spatial scales employed by foraging bees in sampling their environment and making foraging decisions should depend both on the limits of bumble bee memory and on the spatial and temporal pattern of rewards in the habitat. We analyzed data from previous experiments to determine how recent foraging experience by bumble bees affects their flight distances to subsequent flowers. A single visit to a flower as sufficient to affect the flight distance to the next flower. However, longer sequences of two or three visits had an additional effect on the subsequent flight distance of individual foragers. This suggests that bumble bees can integrate information from at least three flowers for making a subsequent foraging decision. The existence of memory for floral characteristics at least at this scale may have significance for floral selection in natural environments.  相似文献   

3.
Correct decision making is crucial for animals to maximize foraging success and minimize predation risk. Group-living animals can make such decisions by using their own personal information or by pooling information with other group members (i.e. social information). Here, we investigate how individuals might best balance their use of personal and social information. We use a simple modelling approach in which individual decisions based upon social information are more likely to be correct when more individuals are involved and their personal information is more accurate. Our model predicts that when the personal information of group members is poor (accurate less than half the time), individuals should avoid pooling information. In contrast, when personal information is reliable (accurate at least half the time), individuals should use personal information less often and social information more often, and this effect should grow stronger in larger groups. One implication of this pattern is that social information allows less well-informed members of large groups to reach a correct decision with the same probability as more well-informed members of small groups. Thus, animals in larger groups may be able to minimize the costs of collecting personal information without impairing their ability to make correct decisions.  相似文献   

4.
Abstract: Habitat selection among vertebrates entails decision making at a number of spatial scales. An understanding of factors influencing decisions at each of these scales is required for the effective management of wildlife populations. This study investigates the foraging ecology of a population of Glossy Black‐cockatoos in central New South Wales. We took advantage of the characteristic feeding sign produced by Glossy Black‐cockatoos to examine factors influencing habitat selection at multiple spatial scales. Birds preferred to forage at sites where food was abundant and avoided open sites where the predation risk may be greater. Their two food species, Allocasuarina diminuta and Allocasuarina gymnanthera, differed in profitability (kernel intake rate as measured by the ratio of seed weight to total seed and cone weight), as did trees within a species. Both species were utilized extensively, although foraging intensity was greater at sites where the more profitable species was present. In order to maximize their food intake, birds selected individual trees on the basis of cone abundance and profitability. Cones produced in the previous year were preferred.  相似文献   

5.
Behaviour is shaped by evolution as to maximise fitness by balancing gains and risks. Models on decision making in biology, psychology or economy have investigated choices among options which differ in gain and/or risk. Meanwhile, there are decision contexts with uniform risk distributions where options are not differing in risk while the overall risk level may be high. Adequate predictions for the emerging investment patterns in risk uniformity are missing. Here we use foraging behaviour as a model for decision making. While foraging, animals often titrate food and safety from predation and prefer safer foraging options over riskier ones. Risk uniformity can occur when habitat structures are uniform, when predators are omnipresent or when predators are ideal-free distributed in relation to prey availability. However, models and empirical investigations on optimal foraging have mainly investigated choices among options with different predation risks. Based on the existing models on local decision making in risk-heterogeneity we test predictions extrapolated to a landscape level with uniform risk distribution. We compare among landscapes with different risk levels. If the uniform risk is low, local decisions on the marginal value of an option should lead to an equal distribution of foraging effort. If the uniform risk is high, foraging should be concentrated on few options, due to a landscape-wide reduction of the value of missed opportunity costs of activities other than foraging. We provide experimental support for these predictions using foraging small mammals in artificial, risk uniform landscapes. In high risk uniform landscapes animals invested their foraging time in fewer options and accepted lower total returns, compared to their behaviour in low risk-uniform landscapes. The observed trade off between gain and risk, demonstrated here for food reduction and safety increase, may possibly apply also to other contexts of economic decision making.  相似文献   

6.
By putting effort into behaviours like foraging or scanning for predators, an animal can improve the correctness of its personal information about the environment. For animals living in groups, the individual can gain further information if it is able to assess public information about the environment from other group members. Earlier work has shown that consensus group decisions based upon the public information available within the group are more likely to be correct than decisions based upon personal information alone, given that each individual in a group has a fixed probability of being correct. This study develops a model where group members are able to improve their personal likelihood of making a correct decision by conducting some level of (costly) effort. I demonstrate that there is an evolutionarily stable level of effort for all the individuals within the group, and the effort made by an individual should decrease with increasing group size. The relevance of these results to social decision making is discussed: in particular, these results are similar to standard theoretical predictions about the amount of vigilance shown by individuals decreasing with increasing group size. However, this model suggests that these results could come about where individuals are coordinating their effort within the group (unlike standard models, which assume that all individual effort is independent of the actions of others). This ties in with experimental findings where individuals have been shown to monitor the efforts of others.  相似文献   

7.
For marine top predators like seabirds, the oceans represent a multitude of habitats regarding oceanographic conditions and food availability. Worldwide, these marine habitats are being altered by changes in climate and increased anthropogenic impact. This is causing a growing concern on how seabird populations might adapt to these changes. Understanding how seabird populations respond to fluctuating environmental conditions and to what extent behavioral flexibility can buffer variations in food availability can help predict how seabirds may cope with changes in the marine environment. Such knowledge is important to implement proper long‐term conservation measures intended to protect marine predators. We explored behavioral flexibility in choice of foraging habitat of chick‐rearing black‐legged kittiwakes Rissa tridactyla during multiple years. By comparing foraging behavior of individuals from two colonies with large differences in oceanographic conditions and distances to predictable feeding areas at the Norwegian shelf break, we investigated how foraging decisions are related to intrinsic and extrinsic factors. We found that proximity to the shelf break determined which factors drove the decision to forage there. At the colony near the shelf break, time of departure from the colony and wind speed were most important in driving the choice of habitat. At the colony farther from the shelf break, the decision to forage there was driven by adult body condition. Birds furthermore adjusted foraging behavior metrics according to time of the day, weather conditions, body condition, and the age of the chicks. The study shows that kittiwakes have high degree of flexibility in their behavioral response to a variable marine environment, which might help them buffer changes in prey distribution around the colonies. The flexibility is, however, dependent on the availability of foraging habitats near the colony.  相似文献   

8.
Social network analyses allow studying the processes underlying the associations between individuals and the consequences of those associations. Constructing and analyzing social networks can be challenging, especially when designing new studies as researchers are confronted with decisions about how to collect data and construct networks, and the answers are not always straightforward. The current lack of guidance on building a social network for a new study system might lead researchers to try several different methods and risk generating false results arising from multiple hypotheses testing. Here, we suggest an approach for making decisions when starting social network research in a new study system that avoids the pitfall of multiple hypotheses testing. We argue that best edge definition for a network is a decision that can be made using a priori knowledge about the species and that is independent from the hypotheses that the network will ultimately be used to evaluate. We illustrate this approach with a study conducted on a colonial cooperatively breeding bird, the sociable weaver. We first identified two ways of collecting data using different numbers of feeders and three ways to define associations among birds. We then evaluated which combination of data collection and association definition maximized (a) the assortment of individuals into previously known “breeding groups” (birds that contribute toward the same nest and maintain cohesion when foraging) and (b) socially differentiated relationships (more strong and weak relationships than expected by chance). This evaluation of different methods based on a priori knowledge of the study species can be implemented in a diverse array of study systems and makes the case for using existing, biologically meaningful knowledge about a system to help navigate the myriad of methodological decisions about data collection and network inference.  相似文献   

9.
In variable environments, sampling information on habitat quality is essential for making adaptive foraging decisions. In insect parasitoids, females foraging for hosts have repeatedly been shown to employ behavioral strategies that are in line with predictions from optimal foraging models. Yet, which cues exactly are employed to sample information on habitat quality has rarely been investigated. Using the gregarious parasitoid Nasonia vitripennis (Walker; Hymenoptera: Pteromalidae), we provided females with different cues about hosts to elucidate, which of them would change a wasp's posterior behavior suggesting a change in information status. We employed posterior clutch size decisions on a host as proxy for a female's estimation of habitat quality. Taking into account changes in physiological state of the foraging parasitoid, we tested whether different host qualities encountered previously change the subsequent clutch size decision in females. Additionally, we investigated whether other kinds of positive experiences—such as ample time to investigate hosts, host feeding, or egg laying—would increase a wasp's estimated value of habitat quality. Contrary to our expectations, quality differences in previously encountered hosts did not affect clutch size decisions. However, we found that prior egg laying experience changes posterior egg allocation to a host, indicating a change in female information status. Host feeding and the time available for host inspection, though correlated with egg laying experience, did not seem to contribute to this change in information status.  相似文献   

10.
When foraging, animals can maximize their fitness if they are able to tailor their foraging decisions to current environmental conditions. When making foraging decisions, individuals need to assess the benefits of foraging while accounting for the potential risks of being captured by a predator. However, whether and how different factors interact to shape these decisions is not yet well understood, especially in individual foragers. Here we present a standardized set of manipulative field experiments in the form of foraging assays in the tropical lizard Anolis cristatellus in Puerto Rico. We presented male lizards with foraging opportunities to test how the presence of conspecifics, predation-risk perception, the abundance of food, and interactions among these factors determines the outcome of foraging decisions. In Experiment 1, anoles foraged faster when food was scarce and other conspecifics were present near the feeding tray, while they took longer to feed when food was abundant and when no conspecifics were present. These results suggest that foraging decisions in anoles are the result of a complex process in which individuals assess predation risk by using information from conspecific individuals while taking into account food abundance. In Experiment 2, a simulated increase in predation risk (i.e., distance to the feeding tray) confirmed the relevance of risk perception by showing that the use of available perches is strongly correlated with the latency to feed. We found Puerto Rican crested anoles integrate instantaneous ecological information about food abundance, conspecific activity and predation risk, and adjust their foraging behavior accordingly.  相似文献   

11.
Ecological communities are assembled and sustained by colonisation. At the same time, predators make foraging decisions based on the local availabilities of potential resources, which reflects colonisation. We combined field and laboratory experiments with mathematical models to demonstrate that a feedback between these two processes determines emergent patterns in community structure. Namely, our results show that prey colonisation rate determines the strength of trophic cascades – a feature of virtually all ecosystems – by prompting behavioural shifts in adaptively foraging omnivorous fish predators. Communities experiencing higher colonisation rates were characterised by higher invertebrate prey and lower producer biomasses. Consequently, fish functioned as predators when colonisation rate was high, but as herbivores when colonisation rate was low. Human land use is changing habitat connectivity worldwide. A deeper quantitative understanding of how spatial processes modify individual behaviour, and how this scales to the community level, will be required to predict ecosystem responses to these changes.  相似文献   

12.
The preference for foraging in groups and the effect of physiognomic factors of a habitat on its use by foraging Whinchats (Saxicola rubetra) was studied during spring migration stopover in a mosaic cultural landscape at the SE Adriatic coast. Every record of spatially distinct Whinchats, either a solitary individual or a group, was referred to as a Whinchat unit. The units were classified as intensively foraging, less intensively foraging or non-foraging and divided into four size classes. The effect of physiognomic habitat factors on use of habitat by foraging Whinchat units was modelled. All possible additive models using logit link function were constructed from five independent physiognomic variables: (1) natural perches (NP), (2) artificial perches (AP), (3) high herbal vegetation (HHV), (4) open bushes (OB) and (5) heterogeneity of vegetation types (HVT). Variables HHV and OB were included simultaneously in the models. Models that were substantially supported by the data were selected according to second order Akaike’s information criterion AICc. Two such models contained variable(s) (1) NP and (2) NP + AP. The relative importance weights of physiognomic variables NP, AP, HVT, HHV and OB were 1, 0.38, 0.24, 0.13 and 0.13, respectively. Perches were thus the most important physiognomic habitat factor affecting habitat use by Whinchats in a mosaic cultural landscape. The great majority of Whinchats foraged in groups and the proportion of intensively foraging Whinchat units increased with unit size, leading to the conclusion that Whinchats preferred social to solitary foraging on the spring stopover at the SE Adriatic coast.  相似文献   

13.
Foragers typically attempt to consume food resources that offer the greatest energy gain for the least cost, switching between habitats as the most profitable food resource changes over time. Optimal foraging models require accurate data on the gains and costs associated with each food resource to successfully predict temporal shifts. Whilst previous studies have shown that seasonal changes in food quantity and quality can drive habitat shifts, few studies have shown the effects on habitat choice of seasonal changes in metabolic foraging costs. In this study we combined field and literature data to construct an optimal foraging model to examine the effect of seasonal changes in food quantity, food quality and foraging costs on the timing of a switch from terrestrial to aquatic habitat by non‐breeding mute swans Cygnus olor in a shallow river catchment. Feeding experiments were used to quantify the functional response of swans to changes in aquatic plant biomasses. By sequentially testing alternative models with fixed or variable values for food quantity, food quality and foraging cost, we found that we needed to include seasonal variance in foraging costs in the model to accurately predict the observed habitat switch date. However, we did not need to include seasonal variance in food quantity and food quality, as accurate predictions could be obtained with fixed values for these two parameters. Therefore, the seasonal changes in foraging costs were the key factor influencing the behavioural decision to switch feeding habitats. These seasonal changes in foraging costs were driven by changes in water velocity; the profitability of aquatic foraging was negatively related to water velocity, as faster water required more energy to be expended in swimming. Our results demonstrate the importance of incorporating seasonal variation in foraging costs into our understanding of the foraging decisions of animals.  相似文献   

14.
Animals typically decide whether to fight or retreat from conspecifics based on their individual estimates of the costs and benefits of fighting. Theoretical models predict how contenders solve a conflict, but the evaluation processes involved in these decisions depend on multiple factors that are difficult to explore experimentally. We addressed these questions using the non‐breeding territorial aggression of Gymnotus omarorum, in which subordinates make three distinctive decisions to signal their submission during a fight: (1) interruption of their electric discharges to hide from the dominant, (2) stop attacking and retreat, and (3) emission of ‘chirps’, transient submissive electric signals. We confirmed that subordinates take into account the aggressive performance of dominants to shape their own agonistic decisions and performance. The intensity of aggression is highly correlated with an agonistic dyad, and the decision of subordinates to retreat is influenced by the attack rates of dominants. When we lowered the aggression of expected dominants with a 5‐HT1A receptor agonist, the correlation between the two contenders' aggression levels was lost and subordinates completely stopped emitting electric chirp signals. The aforementioned results contribute to the understanding of the decision‐making strategies driven by social challenge inherent to agonistic encounters.  相似文献   

15.
Decision making process is an important component of information use by animals and has already been studied in natural situations. Decision making takes time, which is expressed as a cost in evolutionary explanations of decision making abilities of animals. However, the duration of information assessment and decision making process has not been measured in a natural situation. Here, we use responses of wild magpies (Pica pica) to predictably approaching humans to demonstrate that, regardless of whether the bird perceived high (decided to fly away) or low (resumed foraging) threat level, the bird assessed the situation faster when approaching humans looked directly at it than when the humans were not directly looking at it. This indicates that prey is able to extract more information about the predator’s intentions and to respond sooner when the predator is continuously (“intently”) looking at the prey. The results generally illustrate how an increase of information available to an individual leads to a shorter assessment and decision making process, confirming one of central tenets of psychology of information use in a wild bird species in its natural habitat.  相似文献   

16.
Variation in group size is ubiquitous among socially breeding organisms. An alternative to the traditional examination of average reproductive success in groups of different sizes is to examine individual decision making by determining the cues used for site selection. Once factors used for decision making are known, one can determine whether group-level patterns, such as group size variation, are emergent properties of individual-level decision rules. The advantage of this alternative approach is that it can explain the distribution of group sizes rather than just the occurrence of optimal group sizes. Using barn swallows, I tested, but did not support, the hypothesis that individuals settle at sites based on the previous success of conspecifics (i.e., performance-based conspecific attraction). Instead, I demonstrate that an adaptive site selection decision rule--to breed where it is possible to reuse previously constructed nests--predicts 83% of the variation in the number of breeding pairs at a site. Furthermore, experimental nest removals demonstrated that settlement decisions are also strongly influenced by site familiarity. I discuss the interaction of the cue-based site selection rule with the occurrence of site fidelity and how, more generally, a consideration of individual-level decision rules can improve our understanding of variation in many social behaviors.  相似文献   

17.
There has been much interest in understanding the evolution of social learning. Investigators have tried to understand when natural selection will favor individuals who imitate others, how imitators should deal with the fact that available models may exhibit different behaviors, and how social and individual learning should interact. In all of this work, social learning and individual learning have been treated as alternative, conceptually distinct processes. Here we present a Bayesian model in which both individual and social learning arise from a single inferential process. Individuals use Bayesian inference to combine social and nonsocial cues about the current state of the environment. This model indicates that natural selection favors individuals who place heavy weight on social cues when the environment changes slowly or when its state cannot be well predicted using nonsocial cues. It also indicates that a conformist bias should be a universal aspect of social learning.  相似文献   

18.
Social interactions often have major fitness consequences, but little is known about how specific interacting phenotypes affect the strength of natural selection. Social influences on the evolutionary process can be assessed using a multilevel selection approach that partitions the effects of social partner phenotypes on fitness (referred to as social or group selection) from those of the traits of a focal individual (nonsocial or individual selection). To quantify the contribution of social selection to total selection affecting a trait, the patterns of phenotypic association among interactants must also be considered. We estimated selection gradients on male body size in a wild population of forked fungus beetles (Bolitotherus cornutus). We detected positive nonsocial selection and negative social selection on body size operating through differences in copulation success, indicating that large males with small social partners had highest fitness. In addition, we found that, in low-density demes, the phenotypes of focal individuals were negatively correlated with those of their social partners. This pattern reversed the negative effect of group selection on body size and led to stronger positive selection for body size. Our results demonstrate multilevel selection in nature and stress the importance of considering social selection whenever conspecific interactions occur nonrandomly.  相似文献   

19.
While optimal foraging theory has been of considerable value for understanding hunter-gatherer subsistence patterns, there is a need for a complementary approach to human foraging behavior which focuses on decision-making processes. Having made this argument, the paper proposes the type of modeling approach that should be developed, using decision making during encounter foraging as an example. This model concerns the individual decision maker attempting to improve his foraging efficiency, rather than maximize it, under the constraint of limited information and with conflicting goals. This is illustrated by applying it to the Valley Bisa hunters using computer simulation.  相似文献   

20.
Animals often select one item from a set of candidates, as when choosing a foraging site or mate, and are expected to possess accurate and efficient rules for acquiring information and making decisions. Little is known, however, about the decision rules animals use. We compare patterns of information sampling by western scrub-jays (Aphelocoma californica) when choosing a nut with three decision rules: best of n (BN), flexible threshold (FT), and comparative Bayes (CB). First, we use a null hypothesis testing approach and find that the CB decision rule, in which individuals use past experiences to make nonrandom assessment and choice decisions, produces patterns of behavior that more closely correspond to observed patterns of nut sampling in scrub-jays than the other two rules. This approach does not allow us to quantify how much better CB is at predicting scrub-jay behavior than the other decision rules. Second, we use a model selection approach that uses Akaike Information Criteria to quantify how well alternative models approximate observed data. We find that the CB rule is much more likely to produce the observed patterns of scrub-jay behavior than the other rules. This result provides some of the best empirical evidence of the use of Bayesian information updating by a nonhuman animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号