首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of ascorbate deficiency on carnitine biosynthesis was investigated in young male guinea pigs. Liver and skeletal muscle carnitine levels were reduced in scorbutic animals. Heart and kidney concentrations remained unchanged. 14C-labeled 4-N-trimethylaminobutyrate was administered to control, pair-fed and scorbutic animals and distribution of isotope in compound present in the liver after 30 min was determined. Control and pair-fed animals converted trimethylaminobutyrate to carnitine faster than scorbutic animals. Injection of ascorbate with the [14C]trimethylaminobutyrate reversed the decline in trimethylaminobutyrate hydroxylase (EC 1.14.11.1) activity in scorbutic animals.  相似文献   

2.
Isolated, vascularly perfused small intestine, liver, and kidney were used to investigate their interdependence in the absorption and metabolism of carnitine precursors in the rat. During 30 min of recirculating perfusion, the small intestine absorbed trimethyllysine, hydroxytrimethyllysine, and trimethylaminobutyrate fairly well when they were administered via the lumen or the perfusate. Trimethylaminobutyrate was synthesized from either trimethyllysine or hydroxytrimethyllysine by the small intestine, but further hydroxylation of trimethylaminobutyrate to carnitine did not occur. Trimethyllysine and hydroxytrimethyllysine were not readily absorbed by the liver. In contrast, trimethylaminobutyrate and trimethylaminobutyraldehyde were rapidly absorbed from the perfusate and readily incorporated into carnitine by the liver. Trimethyllysine and hydroxytrimethyllysine were taken up slowly by the kiodney and partially converted to trimethylaminobutyrate during 3409 min of perfusion. Trimethylaminobutyrate was neither absorbed readily by the kidney nor was it hydroxylated to carnitine. These results were compared to whole animal studies performed over an equivalent time period. The data suggest that the isolted small intestine absorbs trimethyllysine well, but it probably plays a minor role in metabolizing physiological quantities of this compound in the whole animal where other organs are competing for the same substrate. In both the isolated organ and in the whole animal, the kidney absorbs and metabolizes trimethyllysine more readily than the liver; whereas the liver absorbs trimethylaminobutyrate more rapidly than either the kidney or the small intestine and, unlike these organs, converts it to carnitine.  相似文献   

3.
Intravenous administration of L-[methyl-3H]-labeled trimethyllysine to rats results in a very rapid accumulation of radioactivity by the kidneys, while the incorporation of the label into the liver occurs at approximately 1% of this rate when calculated per g of wet tissue. The kidneys convert a substantial portion of the trimethyllysine taken up to butyrobetaine and to beta-hydroxytrimethyllysine, a precursor of butyrobetaine, but fail to synthesize carnitine. Significant amounts of radioactivity are recovered in both carnitine and butyrobetaine of hepatic tissue after longer time periods, while the level of labeled trimethyllysine in this organ remains very low. Bilateral nephrectomy results in a marked decrease in the incorporation of label into the liver. These results indicate that in rats, the initial conversion of trimethyllysine to butyrobetaine occurs predominantly in kidney and that the liver capacity for this transformation is considerably smaller than its capacity to synthesize carnitine from butyrobetaine.  相似文献   

4.
The effects of ascorbic acid deficiency and acute fasting (with ascorbate supplementation) on the synthesis of collagen and proteoglycan in costal cartilages from young guinea pigs was determined by in vitro labeling of these components with radioactive proline and sulfate, respectively. Both parameters were coordinately decreased by the second week on a vitamin C-free diet, with a continued decline to 20-30% of control values by the fourth week. These effects were quite specific, since incorporation of proline into noncollagenous protein was reduced by only 30% after 4 weeks on the deficient diet. The time course of the decrease in collagen and proteoglycan synthesis paralleled the loss of body weight induced by ascorbate deficiency. Hydroxylation of proline in collagen synthesized by scorbutic costal cartilage was reduced to about 60% of normal relatively early, and remained at that level thereafter. Neither collagen nor proteoglycan synthesis was returned to normal by the addition of ascorbate (0.2 mM) to cartilage in vitro. Administration of a single dose of ascorbate to scorbutic guinea pigs increased liver ascorbate and restored proline hydroxylation to normal levels by 24 h, but failed to increase the synthesis of collagen or proteoglycan. Synthesis of both extracellular matrix components was restored to control levels after four daily doses of ascorbate. A 96-h total fast, with ascorbate supplementation, produced rates of weight loss and decreases in the synthesis of these two components similar to those produced by acute scurvy. There was a linear correlation between changes in collagen and proteoglycan synthesis and changes in body weight during acute fasting, scurvy, and its reversal. These results suggest that it is the fasting state induced by ascorbate deficiency, rather than a direct action of the vitamin in either of these two biosynthetic pathways, which is the primary regulatory factor.  相似文献   

5.
The biosynthesis of carnitine proceeds from trimethyllysine (TML) by beta-hydroxylation by a liver or kidney mitochondrial enzyme, which requires oxygen, alpha-ketoglutarate, ferrous iron, and ascorbate. This dioxygenase is rapidly inactivated by preincubation with Fe2+, but not Fe3+. The evidence suggests that superoxide anion is involved in the hydroxylation. beta-Hydroxytrimethyllysine undergoes aldol cleavage to glycine and trimethylaminobutyraldehyde under the influence of serine hydroxymethyltransferase and possibly a specific aldolase. The next step, the aldehyde oxidation, is catalyzed by a specific NAD-dependent aldehyde dehydrogenase from liver cytosol. The product, trimethylaminobutyrate, is then hydroxylated by a cytosolic dioxygenase to carnitine. This enzyme, which has the same cofactor requirements as TML hydroxylase, is found in the liver of all species examined, but is absent from the kidney of some species.  相似文献   

6.
Our recent studies suggested that decreased collagen synthesis in bone and cartilage of scorbutic guinea pigs was not related to ascorbate-dependent proline hydroxylation. The decrease paralleled scurvy-induced weight loss and reduced proteoglycan synthesis. Those results led us to propose that the effects of ascorbate deficiency on extracellular matrix synthesis were caused by changes in humoral factors similar to those that occur in fasting. Here we present evidence for this proposal. Exposure of chick embryo chondrocytes to scorbutic guinea pig serum, in the presence of ascorbate, led to effects on extracellular matrix synthesis similar to those seen in scorbutic animals. The rates of collagen and proteoglycan synthesis were reduced to approximately 30-50% of the levels in cells cultured in normal guinea pig serum plus ascorbate, but proline hydroxylation and procollagen secretion were unaffected. Similar results were obtained with serum from fasted guinea pigs supplemented in vivo with ascorbate. The growth rate of the chondrocytes was not significantly affected by scorbutic guinea pig serum.  相似文献   

7.
Following receptor-mediated endocytosis of trimethyllysine-labeled asialofetuin and agalacto-orosomucoid by liver parenchymal and nonparenchymal cells, respectively, the glycoproteins are degraded and the methylated lysine residues released. The free intracellular trimethyllysine is then converted, in addition to 2-N-acetyl-6-N-trimethyllysine, to 4-N-trimethylaminobutyrate, carnitine, and acetylcarnitine. In the presence of 1-amino-D-proline, a vitamin B6 antagonist, the total production from protein-bound trimethyllysine of 4-N-trimethylaminobutyrate, the immediate precursor of carnitine, carnitine, and its acetylated derivative was depressed by as much as 60-80% in perfused rat liver. The decreased synthesis of carnitine was accompanied by an accumulation of 3-hydroxy-6-N-trimethyllysine, and intermediate in the carnitine biosynthetic pathway. The extent of 3-hydroxy-6-N-trimethyllysine accumulation, which was not evident in the absence of added 1-amino-D-proline, depended on the dose of 1-amino-D-proline perfused through the liver. In addition, those effects of 1-amino-D-proline were almost completely reversed by inclusion of pyridoxine in the perfusing medium. These results support the suggestion of a requirement for pyridoxal 5'-phosphate in the biosynthesis of carnitine by the liver.  相似文献   

8.
Carnitine synthesis in rat tissue slices   总被引:2,自引:0,他引:2  
The ability of rat liver, kidney, muscle, heart and testis tissue to carry out the in vitro synthesis of carnitine via ε-N-trimethyllysine and γ-butyrobetaine was studied. All tissues formed γ-butyrobetaine from trimethyllysine, but liver and testis also formed carnitine in about 7% and 1% yield respectively. Liver slices formed trimethyllysine from lysine in about 6% yield. These in vitro studies thus establish that liver has all the enzymes of the carnitine biosynthetic pathway. This tissue appears to be the primary site of carnitine synthesis in the rat as implied from whole animal studies in this and other laboratories.  相似文献   

9.
A high concentration of a basic unidentified amino compound was found in the blood of rats. It was isolated and identified as N epsilon,N epsilon,N epsilon-trimethyllysine by paper chromatography, thin-layer chromatography, high-performance liquid chromatography and amino acid analyzer. It was localized exclusively in red blood cells in the blood of rats. Free trimethyllysine was also determined in the liver, kidney, spleen, brain, muscle, heart and testis of rat. The concentration of free trimethyllysine in red blood cells was more than 10-times as high as that in the other tissues. This compound in red blood cells was found in different species of animals. The relationship between this free trimethyllysine and carnitine was discussed.  相似文献   

10.
Previous studies from this lab have demonstrated that in vitro ascorbate augments neutrophil nitric oxide (NO) generation and oxidative burst. The present study was therefore undertaken in guinea pigs to further assess the implication of ascorbate deficiency in vivo on neutrophil ascorbate and tetrahydrobiopterin content, NOS expression/activity, phagocytosis, and respiratory burst. Ascorbate deficiency significantly reduced ascorbate and tetrahydrobiopterin amounts, NOS expression/activity, and NO as well as free radical generation in neutrophils from scorbutics. Ascorbate and tetrahydrobiopterin supplementation in vitro, though, significantly enhanced NOS catalysis in neutrophil lysates and NO generation in live cells, but could not restore them to control levels. Although phagocytic activity remained unaffected, scorbutic neutrophils were compromised in free radical generation. Ascorbate-induced free radical generation was NO dependent and prevented by NOS and NADPH oxidase inhibitors. Augmentation of oxidative burst with dehydroascorbate (DHA) was counteracted in the presence of glucose (DHA uptake inhibitor) and iodoacetamide (glutaredoxin inhibitor), suggesting the importance of ascorbate recycling in neutrophils. Ascorbate uptake was, however, unaffected among scorbutic neutrophils. These observations thus convincingly demonstrate a novel role for ascorbate in augmenting both NOS expression and activity in vivo, thereby reinforcing oxidative microbicidal actions of neutrophils.  相似文献   

11.
Activity of the key enzymes of gluconeogenesis under alimentary thiamine deficiency (15 days of dietary treatment) was studied in the liver and kidney of fed and 48 h starved rats. As compared to pair-fed controls vitamin B1-deficiency was followed by a decrease of glucose 6-phosphatase and fructose 1,6-bisphosphatase activities in both organs; the activity of phosphoenolpyruvate carboxykinase was diminished only in the liver. Starvation of thiamine-deficient rats (as compared to pair-fed starved group) resulted in lower activation of these enzymes. The decrease of the enzyme activities in thiamine-deficient animals indicates that de novo glucose synthesis in the tissues is depressed, though thiamine-requiring enzymes are not directly involved in this process. Possible mechanisms of alterations described are discussed.  相似文献   

12.
Urinary excretion of total carnitine in 48-h fasted rats dropped to 0.30 +/- 0.01 mumol/day from 2.23 +/- 0.4 mumol/day found in fed, control animals (mean +/- SEM). Despite this marked retention, the total carnitine content of the whole body remained constant, about 83 mumol, predicting a slow-down in biosynthesis. The conversion of butyrobetaine into carnitine takes place only in the liver in rats. 48 h of starvation caused a decrease in the liver butyrobetaine level from 11.6 +/- 1.19 nmol/g to 9.30 +/- 1.19 nmol/g, which in whole livers corresponds to a decrease from 138 nmol to 61.3 nmol. The conversion rate of butyrobetaine into carnitine was studied with radiolabelled butyrobetaine. 30 min after injection of [3H]butyrobetaine the carnitine pool in the liver of fasted rats was labelled to about the same extent as that in fed rats, but from a butyrobetaine pool with higher specific radioactivity. Therefore, the conversion rate of butyrobetaine into carnitine was reduced. The newly formed carnitine found in the whole body of fasted rats was estimated to be 59% of controls. We conclude that the biosynthesis of carnitine in fasted rats slows down, for which a decreased availability of butyrobetaine in the liver is responsible. Urinary excretion of butyrobetaine in the fasted group decreased to 74.1 nmol/day from the 222-nmol/day control value while the butyrobetaine content of whole body did not significantly decrease (2.85 mumol vs. 3.04 mumol). Urinary excretion of trimethyllysine was also depressed.  相似文献   

13.
In previous studies, sodium pivalate has been administered to rats in their drinking water (20 mmoles/L; equivalent to 0.3% of the diet) as a way to lower the concentration of carnitine in tissues and to produce a model of secondary carnitine deficiency. Although this level of supplementation results in a marked decrease in carnitine concentration in a variety of tissues, it does not produce the classical signs of carnitine deficiency (i.e., decreased fatty acid oxidation and ketogenesis). The present study was designed (1) to determine if increasing the level of pivalate supplementation (0.6, 1.0% of the diet) would further reduce the concentrations of total and free carnitine in rat tissues without altering growth or food intake, and (2) to examine the effect of length of feeding (4 vs. 8 weeks) on these variables. Male, Sprague-Dawley rats were randomly assigned to either a control (0.2% sodium bicarbonate) or experimental diet (0.3, 0.6, 1.0% sodium pivalate) for either four or eight weeks. Animals (n = 6/group) were housed in metabolic cages; food and water were provided ad libitum throughout the study. Supplementation with sodium pivalate did not alter water intake or urine output. Ingestion of a diet containing 1.0% pivalic acid decreased food intake (g/day; P < 0.05), final body weight (P < 0.007), and growth rate (P < 0.001) after four weeks. The concentration of total carnitine in plasma, heart, liver, muscle, and kidney was reduced in all experimental groups (P < 0.001), regardless of level of supplementation or length of feeding. The concentration of free carnitine in heart, muscle, and kidney was also reduced (P < 0.001) in rats treated with pivalate for either four or eight weeks. The concentration of free carnitine in liver was reduced in animals supplemented with pivalate for eight weeks (P < 0.05), but no effect was observed in livers from rats treated for four weeks. Excretion of total carnitine and short chain acylcarnitine in urine was increased in pivalate supplemented rats throughout the entire feeding period (P < 0.001). Free carnitine excretion was increased during Weeks 1 and 2 (P < 0.01), but began to decline during Week 3 in experimental groups. During Weeks 6 and 8, free carnitine excretion in pivalate supplemented rats was less than that of control animals (P < 0.01). In summary, no further reduction in tissue carnitine concentration was observed when rats were supplemented with sodium pivalate at levels greater than 0.3% of the diet. Food intake (g/day) and growth were decreased in rats fed a diet containing 1.0% sodium pivalate. These data indicate that maximal lowering of tissue carnitine concentrations is achieved by feeding diets containing 0.3% sodium pivalate or less.  相似文献   

14.
The isoelectric fractionation of hen''s-egg ovotransferrin   总被引:15,自引:12,他引:3       下载免费PDF全文
1. ATP sulphurylase was assayed in various organs from vitamin A-deficient and pair-fed control rats at different stages of deficiency. Activity decreased slightly in the liver and markedly in the adrenal gland. Striking differences in liver activity were observed between pair-fed control and ad libitum-fed animals. This observation suggested that diet (apart from vitamin A) strongly influenced the activity of ATP sulphurylase. 2. Total starvation caused a severe decrease in activity in liver within 48hr. This was due to a lack of protein intake. 3. By feeding groups of vitamin A-deficient and pair-fed control rats on a diet containing 80% protein, the specific activity of the liver ATP sulphurylase was maintained in the pair-fed control group at the normal level of an ad libitum-fed rat, whereas it decreased by 25% (statistically significant at P<0.01) in the deficient rat. On a 20%-protein diet, there were no significant differences between vitamin A-deficient and pair-fed control rats. These relationships held also for enzyme activity expressed per g. of liver, per total liver and per g. of DNA. There were no differences in liver protein or DNA concentration between vitamin A-deficient and control rats on either protein intake. 4. Control rats on a 20%-protein diet had liver specific enzyme activities about one-half of those in control rats on an 80%-protein diet, as well as lower liver protein concentrations. 5. It is concluded that, when the effect of protein deprivation on ATP sulphurylase is separated from the effect of vitamin A deficiency, a lowering of the enzyme activity caused by the vitamin deficiency is demonstrable.  相似文献   

15.
16.
The effect of vitamin C deficiency on various enzymes of the intestinal epithelium has been studied in guinea pigs. Brush border sucrase and alkaline phosphatase activities were considerably enhanced (p less than 0.001), but leucine aminopeptidase levels were reduced in scorbutic animals compared to the control group. There was essentially no change in the activity of maltase under these conditions. Kinetic studies with sucrase and alkaline phosphatase in control and scorbutic animals revealed that augmentation of the enzyme activities in scurvy is due to enhanced enzyme contents. Lactate dehydrogenase, succinate dehydrogenase, glucose-6-phosphatase and Mg+2 ATPase also exhibited reduced activities in the intestine of vitamin-C-deficient animals. Observed alterations in the activities of intestinal enzymes in scurvy were restored to control levels upon feeding of vitamin C to scorbutic guinea pigs.  相似文献   

17.
The release of carnitine is an important metabolic function of the liver. In the present study, we have investigated the effect of increased carnitine concentration on the hepatic release of carnitine. Hepatic carnitine concentration was increased in rats by clofibrate treatment. Release of carnitine was investigated as its efflux from perfused liver and its secretion into bile. A significantly smaller proportion of the hepatic pool of carnitine was released into the perfusion medium when carnitine concentration was increased by clofibrate treatment. However, the amount of carnitine released (nmol/g liver) was comparable to that of control rats. Increased carnitine concentration by clofibrate treatment also did not affect the rate of biliary secretion of carnitine. In control rats, nearly 50% of the released carnitine, in both the perfusion medium and bile, was acylcarnitine whereas in clofibrate-treated rats 35% of the released carnitine was acylcarnitine. Release into the perfusion medium was the major route for the hepatic export of carnitine. We conclude that when hepatic carnitine concentration is increased by clofibrate treatment, a smaller proportion of the hepatic carnitine pool is released, but the amount of carnitine released (nmol/g liver) is not greatly different than that from control animals.  相似文献   

18.
Carnitine metabolism in the vitamin B-12-deficient rat.   总被引:4,自引:1,他引:3       下载免费PDF全文
In vitamin B-12 (cobalamin) deficiency the metabolism of propionyl-CoA and methylmalonyl-CoA are inhibited secondarily to decreased L-methylmalonyl-CoA mutase activity. Production of acylcarnitines provides a mechanism for removing acyl groups and liberating CoA under conditions of impaired acyl-CoA utilization. Carnitine metabolism was studied in the vitamin B-12-deficient rat to define the relationship between alterations in acylcarnitine generation and the development of methylmalonic aciduria. Urinary excretion of methylmalonic acid was increased 200-fold in vitamin B-12-deficient rats as compared with controls. Urinary acylcarnitine excretion was increased in the vitamin B-12-deficient animals by 70%. This increase in urinary acylcarnitine excretion correlated with the degree of metabolic impairment as measured by the urinary methylmalonic acid elimination. Urinary propionylcarnitine excretion averaged 11 nmol/day in control rats and 120 nmol/day in the vitamin B-12-deficient group. The fraction of total carnitine present as short-chain acylcarnitines in the plasma and liver of vitamin B-12-deficient rats was increased as compared with controls. When the rats were fasted for 48 h, relative or absolute increases were seen in the urine, plasma, liver and skeletal-muscle acylcarnitine content of the vitamin B-12-deficient rats as compared with controls. Thus vitamin B-12 deficiency was associated with a redistribution of carnitine towards acylcarnitines. Propionylcarnitine was a significant constituent of the acylcarnitine pool in the vitamin B-12-deficient animals. The changes in carnitine metabolism were consistent with the changes in CoA metabolism known to occur with vitamin B-12 deficiency. The vitamin B-12-deficient rat provides a model system for studying carnitine metabolism in the methylmalonic acidurias.  相似文献   

19.
The effects of ascorbic acid (AA) deficiency on microsomal and soluble (postmicrosomal supernatant) enzymes which catalyze drug metabolism were studied in the guinea pig liver, lung, and kidney, (i) Twenty-one days of AA depletion produced a 50–60% decrease in hepatic cytochrome P-450 levels, 20–30% decreases in renal levels, but no significant changes in pulmonary cytochrome P-450 content. Upon repletion of ascorbic acid, recovery to control levels occurred within 7 days. (ii) The decreases in hepatic cytochrome P-450 in scurvy were not accompanied by a corresponding increase in cytochrome P-420. (iii) Aminopyrine N-demethylation decreased by 40% in livers of deficient animals, and recovered within 3 days, but there were no corresponding changes in lungs and kidneys. (iv) There were no significant alterations of NADPH-cytochrome c reductase activity in scorbutic animals in any of the three organs. (v) Activity of “native” UDP-glucuronyl transferase was increased in liver microsomes after 21 days of deficiency, but this apparent increase was not observed when the enzyme was fully activated in vitro with UDP N-acetylglucosamine. “Native” UDP-glucuronyl transferase was increased in kidneys of deficient animals and unchanged in lungs. (vi) In the postmicrosomal supernatant, glutathione S-aryl transferase activity in deficient livers decreased tc 50% of control and did not fully recover after 14 days of ascorbic acid repletion. These changes were not seen in kidney and lung. (vii) Also in the postmicrosomal supernatant, p-aminobenzoic acid (PABA) N-acetyl transferase activity increased in the kidneys of deficient animals, but was unchanged in liver and lungs. (viii) Addition of ascorbic acid in vitro to hepatic microsomes prepared from scorbutic animals had no effect on activities of aminopyrine N-demethylase, NADPH-cytochrome c reductase, PABA N-acetyl transferase, and glutathione S-aryl transferase.  相似文献   

20.
In acutely scorbutic guinea pigs, where interstitial collagen synthesis is markedly impaired, there was no significant reduction in total complement component C1 activity measured by a functional assay, and no significant reduction in the ratio of protein-bound hydroxyproline to protein-bound proline or to total serum protein, in comparison with pair-fed controls. There was a moderate increase in non-protein-bound hydroxyproline in the serum of the deficient animals.These result suggest that component C1q is largely resistant to the effects of severe acute scurvy, adn that some hydroxyproline-containing proteins may respond differently others, during vitamin C deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号