首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The fatty acid and cholesterol contents of tissue membranes are the determinants of membrane stability and functionality. This study was designed to evaluate the influence of a high monounsaturated fatty acid diet on the fatty acid composition of rat liver microsomes and on their cholesterol and lipid phosphorus content. Weanling animals were fed for 5 weeks with high fat diets containing olive oil or corn oil. Saturated fatty acids were increased and oleic acid decreased in microsomal total phospholipids and in the three major phosphoglycerides, phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI), of rats fed corn oil as compared to the olive oil group. The percentage of linoleic acid was higher in the corn oil group, but only for total phospholipids and PC. Linoleic and alpha-linolenic metabolites were significantly increased in total phospholipids of olive oil-fed animals with respect to those fed corn oil. These changes were responsible for the low unsaturation index found in microsomal phospholipids of the corn oil group. The diet did not affect the microsome cholesterol or the lipid phosphorus content. These results show that, in olive oil-fed rats, the cholesterol content and the degree of unsaturation of liver microsomes was similar to that observed in weanling animals; this probably suggests an adequate maintenance of functionality of membranes in olive oil-fed animals.  相似文献   

2.
Rats were fed diets that differed in fatty acid composition or in the proportion of energy derived from fat to determine if alteration of dietary fat intake influences the structural lipid composition of liver plasma membrane and the expression of an associated hormone-receptor-mediated function. Weanling rats were fed 9% (w/w) or 20% (w/w) low-erucic acid rape-seed oil or 9% (w/w) soya-bean oil for 24 days. Plasma membranes were isolated and the effect of diet fat on the fatty acid composition of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and sphingomyelin was determined. Diet fat significantly altered total saturated and (omega-9) and (omega-6)-unsaturated fatty acid composition in addition to the (omega-6)- to (omega-3)-unsaturated fatty acid ratio in these polar lipids. Feeding the high-fat diet increased the (omega-6)- to (omega-3)-unsaturated fatty acid ratio and the (omega-9)-unsaturated fatty acid content in all lipids except sphingomyelin. Assay of glucagon-stimulated adenylate cyclase activity at both high and low glucagon concentrations indicated that high-fat intake also decreased cyclic AMP formation. In a second experiment the fat intake was held constant (40% of energy) and oleic acid was substituted for linoleic acid by blending high- and low-linoleic acid-type safflower oils. This experiment established that a dose-response relationship exists between dietary intake of fatty acid and the fatty acid composition of plasma-membrane phospholipids. Specific diet-induced transitions in membrane phospholipid fatty acid composition were paralleled by changes in glucagon-stimulated adenylate cyclase activity. This study suggests that transitions in dietary fat intake can alter a hormone-receptor-mediated enzyme function in vivo by changing the surrounding lipid environment.  相似文献   

3.
Rats were maintained on nutritionally complete diets enriched in unsaturated (menhaden fish oil) or saturated (butter fat) triacylglycerols. After 4 weeks, the animals were killed, proximal small intestinal brush-border membranes were prepared, and examined and compared with respect to their lipid composition, molecular species of phosphatidylcholine, lipid fluidity and sodium-dependent D-glucose transport. Membranes prepared from the two dietary groups were found to possess similar ratios of cholesterol/phospholipid (mol/mol), sphingomyelin/phosphatidylcholine (mol/mol), and protein/lipid (w/w). In contrast to these findings, however, striking differences were noted in the total fatty acid compositions of these membranes. Plasma membranes prepared from animals fed the fish oil diet possessed higher percentages of saturated fatty acids as well as (n - 3) unsaturated fatty acids and lower percentages of monounsaturated and (n - 6) unsaturated fatty acids than those prepared from animals fed the butter fat diet. Analysis of the molecular species of phosphatidylcholine by HPLC, moreover, revealed that membranes from rats fed fish oil had higher levels of 16:0-20:5, 16:0-22:6 and 18:0-20:5 and lower levels of 18:0-18:2 and 16:0-18:1 than their butter fat counterparts. As assessed by steady-state fluorescence polarization, differential polarized phase fluorometric and excimer/monomer fluorescence intensity techniques using various fluorophores, the lipid fluidity of membranes from rats fed fish oil was also found to be significantly lower compared to membranes from rats fed butter fat. Finally, comparison of the kinetic parameters of Na+-dependent D-glucose transport revealed that fish oil-membrane vesicles had a higher maximum velocity (Vmax) than butter fat membrane vesicles but a similar Km for glucose.  相似文献   

4.
Male weanling rats were fed diets containing 20% (w/w) fat differing in fatty acid composition for 24 days. Synaptic plasma membranes were isolated from the brain and the fatty acid composition of phosphatidylethanolamine and phosphatidylcholine was determined. In vitro assays of phosphatidylethanolamine methyl-transferase activity were performed on fresh membrane samples to assess effect of dietary fat on the rate of phosphatidylethanolamine methylation for phosphatidylcholine synthesis via the phosphatidylethanolamine methyltransferase pathway. Dietary level of n-6 and ratio of n-6 to n-3 fatty acids influenced membrane phospholipid fatty acid composition and activity of the lipid-dependent phosphatidylethanolamine methyltransferase pathway. Rats fed a diet rich in n-6 fatty acids produced a high ratio of n-6/n-3 fatty acids in synaptosomal membrane phosphatidylethanolamine, and elevated rates of methylation of phosphatidylethanolamine to phosphatidylcholine by phosphatidylethanolamine methyltransferases, suggesting that the pathway exhibits substrate selectivity for individual species of phosphatidylethanolamine containing long-chain homologues of dietary n-6 and n-3 fatty acids (20:4(n-6), 22:4(n-6), 22:5(n-6) and 22:6(n-3). It may be concluded that diet alters the membrane content of n-6, n-3 and monounsaturated fatty acids, and that change in phosphatidylethanolamine species available for methylation to phosphatidylcholine alters the rate of product synthesis in vivo by the phosphatidylethanolamine methyltransferase pathway.  相似文献   

5.
Work by other investigators has shown that an increase in dietary content of monounsaturated fatty acids can result in a decreased plasma low density lipoprotein (LDL) cholesterol concentration. This observation, combined with the epidemiologic evidence that monounsaturated fat-rich diets are associated with decreased rates of death from coronary heart disease, suggests that inclusion of increased amounts of mono-unsaturated fat in the diet may be beneficial. The present study was carried out in a primate model, the African green monkey, to evaluate the effects of dietary monounsaturated fat on plasma lipoprotein cholesterol endpoints. Two study periods were carried out in which the fatty acid compositions of the experimental diets were varied. All diets contained 35% of calories as fat. In the first experimental period, a mixture of fats was used to set the dietary fatty acid composition to be approximately 50-60% of the desired fatty acid, either saturated, monounsaturated, or polyunsaturated (n-6). In the second experimental period, pure fats were used (palm oil, oleic acid-rich safflower oil, and linoleic acid-rich safflower oil) to maximize the difference in fatty acid composition. The effects of the more exaggerated dietary fatty acid differences of period 2 were similar to those that have been reported in humans. For the group fed the diet enriched in monounsaturated fat compared to saturated fat, whole plasma and LDL cholesterol concentrations were significantly lower while high density lipoprotein (HDL) cholesterol concentrations were not affected. For the group fed the diet enriched in polyunsaturated fat compared to saturated fat, both LDL and HDL cholesterol concentrations were significantly lower than in the group fed saturated fat. LDL cholesterol concentrations were comparable in the monounsaturated and polyunsaturated fat groups and the percentage of cholesterol in LDL was lowest in the monounsaturated fat fed group. Trends were similar for the mixed fat diets, although no statistically significant differences in plasma lipoprotein endpoints could be attributed to monounsaturated fatty acids in this dietary comparison. Since effects on plasma lipoproteins similar to those seen in humans were identified in this primate model, relevant mechanisms for the effects of dietary fatty acids on lipoprotein endpoints related to coronary artery atherosclerosis, per se, can subsequently be examined.  相似文献   

6.
The effect of dietary lipid on the thermotropic properties of acetylcholinesterase activity was examined in rat synaptosomal membrane preparations after feeding diets containing soya-bean oil, sunflower oil or soya-bean phosphatidylcholine as the dietary fats. Arrhenius plots and energies of activation were altered by the duration of feeding as a function of time, as well as by the composition of diet fat fed. Animals fed sunflower oil had the highest maximal velocity for acetylcholinesterase activity. The observations of this study suggest that dietary fat is an important determinant of the physicokinetic properties of lipid-dependent functions in brain synaptosomal membranes.  相似文献   

7.
Changes in microsomal fatty acid composition, delta 9- and delta 6-desaturase activities and cholesterol and phosphorus liver content were studied in dogs fed olive and sunflower oil diets. No changes were observed in the saturated fatty acids between dietary groups. The level of monounsaturated fatty acids was more elevated in animals fed the OO diet, because of its high relative content in this diet although the in vitro delta 9-desaturase activity was similar in microsomes from the two groups. The proportion of arachidonic acid was similar in SO and OO fed animals. This similar level occurred despite a significant increase in the level of linoleic acid in membrane lipids as a result of feeding the SO supplement. The in vitro delta 6-desaturase activity in liver microsomes showed no differences between dogs fed the two diets. Thus, the higher desaturation presented in vivo by microsomes from OO group may be related to the inhibition by linoleic acid of delta 6-desaturase in dogs fed the SO diet. The polyunsaturated fatty acids (PUFA) from the n-3 series were higher in microsomal phosphatidylcholine and phosphatidylethanolamine from animals fed the OO supplemented diet. The cholesterol/phosphorus molar ratio was higher in the SO group in which the unsaturation index was only slightly affected in phospholipids.  相似文献   

8.
Dietary control of diacylphosphatidylethanolamine species in brain   总被引:2,自引:0,他引:2  
The content and composition of the brain diacylphosphatidylethanolamine species was examined in response to dietary fat intake. Synaptic plasma membrane and microsomal membrane subcellular fractions contain phosphatidylethanolamine species profiles that respond differently to modulation by diet fat. The microsomal content of individual phosphatidylethanolamine species was most responsive to diet treatment and to addition of cholesterol to the diet. Feeding fish oil or linseed oil diets resulted in an increased membrane content of phosphatidylethanolamine species containing six double bonds for both microsomal and synaptic plasma membranes, compared with soya-bean oil- or sunflower oil-fed animals. The 22:5(n - 6) content present in phosphatidylethanolamine species of linseed oil and fish oil-fed animals was also reduced. For microsomal membranes, increase in dietary 18:3(n - 3) resulted in an increased content of phosphatidylethanolamine species containing one double bond. Addition of cholesterol to linseed oil or fish oil diets decreased the microsomal membrane content of phosphatidylethanolamine species containing six double bonds and increased the membrane content of species containing one double bond. For synaptic plasma membrane, addition of cholesterol to linseed oil and fish oil diets increased membrane content of species containing six double bonds. Fish oil-fed animals exhibited a decreased content of species containing a single double bond. The implications of the diet-induced changes in phospholipid species content and composition are discussed.  相似文献   

9.
We measured the interactive effects of dietary cholesterol and fat on the regulation of hepatic acyl-CoA:cholesterol acyltransferase (ACAT) activity and its relationship to hepatic microsomal lipid composition in guinea pigs fed 15 g/100 g (w/w) fat diets (corn oil, olive oil, or lard) with 0.01, 0.08, 0.17, or 0.33 g/100 g (w/w) added cholesterol. Guinea pigs exhibited a dose dependent increase in hepatic microsomal ACAT activity, with increasing levels of cholesterol intake (P < 0.001) in all dietary fat groups. Animals fed monounsaturated olive oil had the highest hepatic ACAT activity with the exception of the 0.33 g/100 g cholesterol diet (P < 0.001). There were no differences in ACAT activity with intake of polyunsaturated corn oil or saturated lard. Dietary cholesterol resulted in increased microsomal free cholesterol (FC) concentrations in a dose dependent manner but had no effects on microsomal phosphatidylcholine (PC) concentrations. Guinea pigs fed olive oil generally had the highest microsomal FC/PC molar ratios, and hepatic ACAT activities correlated significantly with this parameter. After modification of the lipid compositions of the microsomes from guinea pigs fed the 12 test diets with FC/PC liposome treatment, microsomal ACAT activities remained significantly related to the microsomal FC/PC molar ratios, and dietary fat type did not affect this correlation. Our findings do not support the hypothesis that the stimulation of hepatic ACAT activity with cholesterol intake is enhanced by polyunsaturated fat intake. The data demonstrate that although dietary fat type and cholesterol amount have differential effects on hepatic ACAT activity, substrate availability, expressed as microsomal FC/PC molar ratio, is a major regulator of hepatic microsomal ACAT activity.  相似文献   

10.
Rats fed a 1% cholesterol and 0.5% cholate diet for 21 days were transferred to a sterol-free diet after variable periods of time. The effect of cholesterol removal on liver microsomal composition and fatty acid desaturases was studied. Some changes were already observed after 1 day. However, after 21 days of a sterol-free diet, the cholesterol content of liver microsomes decreased as well as that of phosphatidylcholine. So did the cholesterol/phospholipid ratio. Phosphatidylinositol, phosphatidylserine and sphingomyelin slightly increased along with time. The total fatty acid composition was altered by a decrease in monounsaturated acids and an increase in the saturated acids, palmitic and stearic acids. The arachidonic acid content rose. A similar pattern of change was found in the fatty acid composition of the main phospholipids: phosphatidylcholine and phosphatidylethanolamine. delta 9-Desaturase activity steadily decreased along with cholesterol removal, whereas delta 5- and delta 6-desaturase activities were enhanced towards the end of the removal period. The microsomal membrane became more 'fluid', according to the decrease of fluorescence anisotropy of the 1,6-diphenyl-1,3,5-hexatriene incorporated into the membrane.  相似文献   

11.
The fatty acyl group composition of Ehrlich ascites tumor cell plasma membranes was modified by feeding the tumor-bearing mice diets rich in either coconut or sunflower oil. When coconut oil was fed, the oleate content of the membrane phospholipids was elevated and the linoleate content reduced. The opposite occurred when sunflower oil was fed. Qualitatively similar changes were observed in the plasma membrane phosphatidylethanolamine, phosphatidylcholine and mixed phosphatidylserine plus phosphatidylinositol fractions. These diets also produced differences in the sphingomyelin fraction, particularly in the palmitic and nervonic acid contents. Unexpectedly, the saturated fatty acid content of the plasma membrane phospholipids was somewhat greater when the highly polyunsaturated sunflower oil was fed. The small quantities of neutral lipids contained in the plasma membrane exhibited changes in acyl group composition similar to those observed in the phospholipids. These fatty acyl group changes were not accompanied by any alteration in the cholesterol or phospholipid contents of the plasma membranes. Therefore, the lipid alterations produced in this experimental model system are confined to the membrane acyl groups.  相似文献   

12.
The fatty acyl group composition of Ehrlich ascites tumor cell plasma membranes was modified by feeding the tumor-bearing mice diets rich in either coconut or sunflower oil. When coconut oil was fed, the oleate content of the membrane phospholipids was elevated and the linoleate content reduced. The opposite occurred when sunflower oil was fed. Qualitatively similar changes were observed in the plasma membrane phosphatidylethanolamine, phosphatidylcholine and mixed phosphatidylserine plus phosphatidylinositol fractions. These diets also produced differences in the sphingomyelin fraction, particularly in the palmitic and nervonic acid contents. Unexpectedly, the saturated fatty acid content of the plasma membrane phospholipids was somewhat greater when the highly polyunsaturated sunflower oil was fed. The small quantities of neutral lipids contained in the plasma membrane exhibited changes in acyl group composition similar to those observed in the phospholipids. These fatty acyl group changes were not accompanied by any alteration in the cholesterol or phospholipid contents of the plasma membranes. Therefore, the lipid alterations produced in this experimental model system are confined to the membrane acyl groups.  相似文献   

13.
1. The effect of different dietary fat intake on the lipid composition and fluidity of microsomal membranes as well as in the enzymatic activity of the Ca2+-ATPase from chick breast muscle was investigated. 2. When a standard diet was supplemented with 10% sunflower seed oil, an increase in the relative amounts of unsaturated fatty acids and membrane fluidity and a decrease in the cholesterol content was observed. 3. The presence of 6% cholesterol in the diet does not modify the fatty acid composition and the fluidity of the membrane but increased, in a low extension, the cholesterol content. 4. The provision of the sunflower seed oil-rich diet supplemented with cholesterol just 48 hr before death promoted an increase in the relative amounts of unsaturated fatty acids and cholesterol content whereas the membrane fluidity decreased in a significant extent. 5. Despite that dietary lipids gave rise in some cases to changes in lipid composition and in the physical state of the microsomal membrane, neither the Ca2+ uptake capacity nor the ATPase activity were significantly affected.  相似文献   

14.
The present study was undertaken to analyze whether the changes induced by dietary manipulations in the chemical composition of HDL, particularly in total phospholipids, phosphatidylcholine and sphingomyelin fatty acid composition, modified their fluidity. 12 healthy women, aged 26-49 years were studied. They consumed, over periods of 5 weeks, various isocaloric diets, each containing 30% of the calories as fat. 15.6% of the total calories were provided successively by olive oil, soybean oil, corn oil, and milk fats. The HDL fluorescence anisotropy was measured with 1,6-diphenyl-1,3,5-hexatriene (DPH) by fluorescence polarization. The HDL from the monounsaturated diet, olive oil, were the most fluid particles. The HDL fluorescence anisotropy was positively correlated with their free cholesterol percentage and negatively correlated with their triacylglycerol content and their triacylglycerol/phospholipid ratio. Moreover, the HDL fluorescence anisotropy was negatively correlated with the percentage of oleic acid in their total phospholipids and particularly in the phosphatidylcholine. These results suggest that the percentages of triacylglycerol and oleic acid in phospholipids of HDL have a fluidifying effect on these lipoproteins.  相似文献   

15.
Differential scanning colorimetry (DSC) has been applied to study the phase transition properties of isolated lipids from liver microsomal membranes of rats fed high cholesterol diets with or without high levels of either saturated (coconut oil) or unsaturated (sunflower seed oil) fat. DSC of aqueous buffer dispersions of liver microsomal lipids exhibited two independent, reversible phase transitions. The dietary cholesterol treatments had their major effect on the temperature at which the lower phase transition (T1) occurred. This transition occurred at a lower temperature when cholesterol was added to the diet, irrespective of the nature of the fatty acid supplement. However the magnitude of decrease was more when cholesterol was fed with sunflower seed oil. Inclusion of cholesterol into the rat diets also lowered the enthalpy values for the lower phase transition (T1). No appreciable effect on the temperature of the higher phase transition (T2) was observed, however the enthalpy values were slightly decreased by cholesterol feeding. These results suggest that certain domains of microsomal lipids, probably containing some relatively higher melting-point lipids, independently undergo solidus or gel formation and this transition (T2) is not greatly affected by dietary cholesterol. On the other hand, domains representing the bulk of the microsomal lipids undergo a phase change (T1) at temperatures which are dependent on cholesterol content and fatty acid profiles of the membrane, which are in turn, modified by dietary cholesterol intake.  相似文献   

16.
The activity of acyl-CoA: cholesterol acyltransferase in the liver-microsomal fraction was considerably reduced in chicks fed on diet containing unsaturated fat, whereas the activity of HMG-CoA reductase and NADPH cytochrome c reductase was not affected. The fatty acid composition of the microsomes was modified appreciably by this dietary condition and there was no change in the phospholipid or cholesterol levels. The addition of cholesterol to the fat supplemented diet resulted in a considerable increase in the microsomal cholesterol content. A decrease in HMG-CoA reductase and an increase ACAT activity was observed compared with the corresponding values from both the groups fed on a standard diet and a fat supplemented diet with no cholesterol. These results suggest that acyl-CoA: cholesterol acyltransferase is modulated by alteration in the fatty acid composition of the microsomal membrane, while the cholesterol content of the microsomes shows a close relationship with the HMG-CoA reductase activity.  相似文献   

17.
The objective was to determine the effect of long-term dietary supplementation of two types of fish oil on lipid composition and steroidogenesis in adult pig testis. Twenty-four Duroc boars, aged 204.5 ± 9.4 d (body weight 128.1 ± 16.7 kg) received daily 2.5 kg of an iso-caloric basal diet supplemented with: 1) 62 g of hydrogenated animal fat (AF); 2) 60 g of menhaden oil (MO) containing 16% of eicosapentaenoic acid (EPA) and 18% of docosahexaenoic acid (DHA); or 3) 60 g of tuna oil (TO) containing 7% of EPA and 33% of DHA. After these diets were consumed for 7 mo, testicular hormones, phospholipid content, and fatty acid composition of individual phospholipids in testis were determined. Body and reproductive organ weights were not significantly affected by dietary treatments. Testicular tissue from boars fed a TO diet, followed by those receiving MO and AF diets, had the lowest level of phosphatidylethanolamine (TO < MO < AF; P < 0.01) but the highest sphingomyelin (TO > MO > AF; P < 0.01). For each phospholipid, boars fed either the MO or TO diet had increased total omega-3 fatty acids, particularly DHA (P < 0.01), by reciprocal replacement of total omega-6 fatty acids (20:4n-6, 22:5n-6). The MO diet increased EPA more than the other diets. Testicular concentrations of testosterone and estradiol were lower in boars fed a TO diet than a MO diet (P < 0.02). In conclusion, long-term dietary supplementation of fish oil, regardless of the EPA/DHA ratio, modified the fatty acid compositions in testis and affected steroid production of healthy adult boars, which may represent a promising models for future studies on fertility.  相似文献   

18.
Dietary lipid supplements high in either saturated fat derived from sheep kidney fat or unsaturated fat derived from sunflower seed oil, and a low mixed fat reference diet were fed to marmoset monkeys for 20 months and the effects on cardiac membrane lipid composition, and myocardial catecholamine-stimulated adenylate cyclase and beta-adrenergic receptor binding activity were investigated. For cardiac membranes enriched for beta-adrenergic binding activity, the dietary lipid treatment resulted in small changes in the proportion of saturated to unsaturated fatty acids and substantial changes in the (n - 6) to (n - 3) series of unsaturated fatty acids in the membrane phospholipids. The sheep kidney fat diet increased the cholesterol-to-phospholipid ratio in cardiac membranes in comparison to the other diets. This diet also significantly elevated basal and isoproterenol-, epinephrine- and norepinephrine-stimulated adenylate cyclase activity. The value of the dissociation constant (Kd) and the receptor number (Bmax) for the binding of [125I]ICYP to the beta-adrenergic receptor was significantly reduced in marmosets fed the sheep kidney fat diet. These results suggest that dietary lipids can influence the activity of the beta-adrenergic/adenylate cyclase system of the heart. Modulation of this transmembrane signalling system may be induced by changes in the properties of the associated membrane lipids, particularly by alteration in the membrane cholesterol-to-phospholipid ratio. This effect may be limited to those animal species in which the nature of the dietary fatty acid intake may be influencing cardiac membrane cholesterol homeostasis, which is in agreement with previous results in rats following dietary cholesterol supplementation (McMurchie et al. (1987) Biochim. Biophys. Acta 898, 137-153). ICYP, (-)-iodocyanopindolol.  相似文献   

19.
A novel longitudinal feeding design was used to investigate the controlling influence of dietary fatty acids on the dynamic incorporation of fatty-acyl chains into phosphatidylcholine, phosphatidylethanolamine and cardiolipin in inner membrane of cardiac mitochondria. Rats were fed a polyunsaturated-fatty-acid-rich oil (soya-bean oil) for 12 days, crossed-over to a monounsaturated-fatty-acid-rich oil (rapeseed oil) for the next 11 days, then returned to soya-bean oil for 11 more days. Additional rats were fed either soya-bean oil or rapeseed oil only throughout. Rats were killed serially. Regression analysis was used to represent longitudinal flux in membrane lipid fatty-acid composition occurring with change in dietary fat. The fatty-acid composition of phosphatidylcholine, phosphatidylethanolamine and cardiolipin was influenced by dietary oil in a reversible way. Maximal diet influence was achieved in the 11-day cross-over period. Soya-bean oil to rapeseed oil cross-over caused the fatty-acid composition of phosphatidylcholine, phosphatidylethanolamine and cardiolipin to resemble that of rats fed rapeseed oil only. These changes were reversed by crossing back to soya-bean oil, indicating the dynamic state and short half-life of membrane phospholipid fatty-acyl chains. This report demonstrates for the first time in the whole animal fed diets adequate in all nutrients that subcellular membrane lipids rapidly respond to change in dietary fatty-acid balance. The system may be used to assess in vivo the significance of dietary fat in determining membrane physicochemical properties and biochemical functions.  相似文献   

20.
Cholesterol-induced microsomal changes modulate desaturase activities   总被引:9,自引:0,他引:9  
The effect of 1% dietary cholesterol and 0.5% cholate on the rat liver microsomal composition and fatty acid desaturase activities was studied over various periods of time. The cholesterol content of liver microsomes increased as well as that of phosphatidylcholine. Cholesterol/phosphatidylcholine and phosphatidylcholine/phosphatidylethanolamine ratios were also elevated. Phosphatidylinositol decreased, but it recovered its original values at the end of the experimental period. Phosphatidylserine and sphingomyelin slightly decreased with time. Fatty acid composition changes were expressed by a saturated acid decrease and monounsaturated acid increase. Arachidonic acid content was also reduced. A similar pattern appeared in the main phospholipids: phosphatidylcholine and phosphatidylethanolamine. Delta 9-Desaturase activity was enhanced as early as 48 h after cholesterol administration, whereas delta 5- and delta 6-desaturases were depressed during the same period and this enzymatic behaviour remained after 21 days of diet administration. The microsomal membrane was rigidized, as demonstrated by the increase of the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号