首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Association constants for tRNA binding to poly(U) programmed ribosomes were assessed under standardized conditions with a single preparation of ribosomes, tRNAs, and elongation factors, respectively, at 15 and 10 mM Mg2+. Association constants were determined by Scatchard plot analysis (the constants are given in units of [10(7)/M] measured at 15 mM Mg2+): the ternary complex Phe-tRNA.elongation factor EF-Tu.GTP (12 +/- 3), Phe-tRNA (1 +/- 0.4), AcPhe-tRNA (0.7 +/- 0.3), and deacylated tRNA(Phe) (0.4 +/- 0.15) bind with decreasing affinity to the A site of poly(U)-programmed ribosomes. tRNA(Phe) (7.2 +/- 0.8) binds to the P site with higher affinity than AcPhe-tRNA (3.7 +/- 1.3). The affinity of the E site for deacylated tRNA(Phe) (1 +/- 0.2) is about the same as that of the A site for AcPhe-tRNA (0.7 +/- 0.3). At lower Mg2+ concentrations the affinity of the E site ligand becomes stronger relative to the affinities of the A site ligands. Phe-tRNA and ternary complexes can occupy the A site at 0 degrees C in the presence of poly(U) even if the P site is free, whereas, as already known, deacylated tRNA or AcPhe-tRNA bind first to the P site of programmed ribosomes. Hill plot analyses of the binding data confirm an allosteric linkage between A and E sites in the sense of a negative cooperativity.  相似文献   

2.
We have previously proposed a three-site model for the elongation cycle. The model is characterized by the presence of two tRNAs on the ribosome before and after translocation. We have already shown a first consequence of the model, namely that the translocation reaction is not coupled with a release of deacylated tRNA. Here we demonstrate the following conclusions. Occupation of the A site triggers the tRNA release from the E site, i.e. the A site occupation induces a drastic decrease in the affinity of the E site for deacylated tRNA. In the concentration range of deacylated tRNA in which a ribosome binds a second tRNA in addition to that one already present at the P site the deacylated tRNA does not compete for one and the same binding site with an A site ligand (AcPhe-tRNA) at 37 degrees C. It follows that the second deacylated tRNA binds to a site, the E site, which is physically distinct from the A site. When the ribosome binds a deacylated tRNA at the E site (in addition to a tRNA at the P site), the A site cannot be occupied by AcPhe-tRNA at 0 degree C and only poorly by the ternary complex elongation factor Tu . Phe-tRNA . guanyl-5'-yl imidodiphosphate. At 37 degrees C a significant A site binding is observed, with a corresponding tRNA release from the E site. In contrast, if the E site is free and only the P site occupied, the A site can bind significant amounts of charged tRNA already at 0 degree C. It follows that an occupied E site induces a low-affinity state of the A site. Thus, the ribosome always contains two high-affinity binding sites, which are A and P sites before and P and E sites after translocation. A and E sites are allosterically linked in a bidirectional manner.  相似文献   

3.
The 30 S subunit contains 2 sites for tRNA binding (Phe-tRNA, AcPhe-tRNA, tRNAPheOH) with the functional properties of D and A sites of the 70 S ribosome after attachment of 50 S subunit. The third (E) site specific for deacylated tRNA is introduced into 70 S ribosome by its 50 S subunit. The E-site binding of tRNAPheOH is not sensitive to either tetracycline and edeine, and practically codon-independent. The affinity constant of tRNAPheOH for the E site is 2-3 orders of magnitude lower than that for the D site.  相似文献   

4.
tRNA binding sites on the subunits of Escherichia coli ribosomes   总被引:2,自引:0,他引:2  
Programmed 30 S subunits expose only one binding site, to which the different classes of tRNA (deacylated tRNAPhe, Phe-tRNAPhe, and N-acetylphenylalanyl (AcPhe)-tRNAPhe) bind with about the same affinity. Elongation factor Tu within the ternary complex does not contribute to the binding of Phe-tRNA. Binding of acylated or deacylated tRNA to 30 S depends on the cognate codon; nonprogrammed 30 S subunits do not bind tRNA to any significant extent. The existence of only one binding site/30 S subunit (and not, for example, two sites in 50% of the subunits) could be shown with Phe-tRNAPhe as well as deacylated tRNAPhe pursuing different strategies. Upon 50 S association the 30 S-bound tRNA appears in the P site (except the ternary complex which is found at the A site). Inhibition experiments with tetracycline demonstrated that the 30 S inhibition pattern is identical to that of the P site but differs from that of the A site of 70 S ribosomes. In contrast to 30 S subunits the 50 S subunit exclusively binds up to 0.2 and 0.4 molecules of deacylated tRNAPhe/50 S subunit in the absence and presence of poly(U), respectively, but neither Phe-tRNA nor AcPhe-tRNA. Noncognate poly(A) did not stimulate the binding indicating codon-anticodon interaction at the 50 S site. The exclusive binding of deacylated tRNA and its dependence on the presence of cognate mRNA is reminiscent of the characteristics of the E site on 70 S ribosomes. 30 and 50 S subunits in one test tube expose one binding site more than the sum of binding capacities of the individual subunits. The results suggest that the small subunit contains the prospective P site and the large subunit the prospective E site, thus implying that the A site is generated upon 30 S-50 S association.  相似文献   

5.
tRNA saturation experiments were performed with ribosomal subunits from the extreme halophilic archaebacterium Halobacterium halobium. In the presence of poly(U) the 30S subunit could bind equally well one AcPhe-tRNAPhe, Phe-tRNAPhe, or deacylated tRNAPhe molecule, respectively. Binding experiments with a mixture of two differently labeled tRNA species revealed that all three kinds of tRNA bound to one and the same binding site on the 30S subunit. Poly(U) dependent binding to the 50S subunit was insignificant for AcPhe-tRNA and Phe-tRNA. In the absence of poly(U) both AcPhe-tRNAPhe and Phe-tRNAPhe showed no significant binding to either subunit, whereas the binding of deacylated tRNAPhe could not be clearly determined. These results are in good agreement with those obtained from ribosomal subunits of the eubacterium Escherichia coli.  相似文献   

6.
To estimate the effect of modified nucleotide-37, the interaction of two yeast aminoacyl-tRNAs (Phe-tRNAK+YPhe and Phe-tRNAK-YPhe) with the A site of complex [70S.poly(U).deacylated tRNA(Phe) in the P site] was assayed at 0-20 degrees C. As comparisons with native Phe-tRNAK+YPhe showed, removal of the Y base decreased the association constant of Phe-tRNAK-YPhe and the complex by an order of magnitude at any temperature, and increased the enthalpy of their interaction by 23 kJ/mol. When the Y base was present in the anticodon loop of deacylated tRNA(Phe) bound to the P site of the 70S ribosome, twice higher affinity for the A site was observed for Phe-tRNAK-YPhe but not for Phe-tRNAK+YPhe. Thus, the modified nucleotide 3' of the Phe-tRNA(Phe) anticodon stabilized the codon-anticodon interaction both in the A and in the P sites of the 70S ribosome.  相似文献   

7.
The standard technique for determination of the ribosomal site location of bound tRNA, viz. the puromycin reaction, has been analyzed with regard to its applicability under tRNA saturation conditions. The criteria derived have been used to re-examine the exclusion principle for peptidyl-tRNA binding, which states that only one peptidyl-tRNA (AcPhe-tRNA) can be bound per ribosome although in principle two sites (A and P site) are available. The following results were obtained. The puromycin reaction is only appropriate for a site determination if the reaction conditions prevent one ribosome from performing more than one puromycin reaction. With an excess of AcPhe-tRNA over ribosomes, and in the absence of EF-G, this criterion is fulfilled at 0 degree C, where the P-site-bound material reacts with puromycin (quantitative reaction after 50 h), while the A-site-bound material does not. In contrast, at 37 degrees C the extent of the puromycin reaction can exceed the binding values by 2-4-fold ('repetitive reaction'). In the presence of EF-G a repetitive puromycin reaction is seen even at 0 degree C, i.e. EF-G can already promote a translocation reaction at 0 degree C. However, the extent of translocation becomes negligibly low for short incubation times (up to 60 min) at 0 degree C, if only catalytic amounts of EF-G are used. Using the criteria outlined above, the validity of the exclusion principle for Escherichia coli ribosomes was confirmed pursuing two different experimental strategies. Ribosomes were saturated with AcPhe-tRNA at one molecule per 70S ribosome, and a quantitative puromycin reaction demonstrated the exclusive P-site location of the AcPhe-tRNA. The same result was also found in the presence of viomycin, which blocks the translocation reaction. These findings also indicate that here nearly 100% of the ribosomes participate in AcPhe-tRNA binding to the P site. Precharging the P sites of 70S ribosomes with one Ac[14C]Phe-tRNA molecule per ribosome prevented additional Ac[3H]Phe-tRNA binding. In contrast, 70S particles carrying one molecule of [14C]tRNAPhe per ribosome were able to bind up to a further 0.64 molecule Ac[3H]Phe-tRNA per ribosome.  相似文献   

8.
Human placenta and Escherichia coli Phe-tRNA(Phe) and N-AcPhe-tRNA(Phe) binding to human placenta 80S ribosomes was studied at 13 mM Mg2+ and 20 degrees C in the presence of poly(U), (pU)6 or without a template. Binding properties of both tRNA species were studied. Poly(U)-programmed 80S ribosomes were able to bind charged tRNA at A and P sites simultaneously under saturating conditions resulting in effective dipeptide formation in the case of Phe-tRNA(Phe). Affinities of both forms of tRNA(Phe) to the P site were similar (about 1 x 10(7) M-1) and exceeded those to the A site. Affinity of the deacylated tRNA(Phe) to the P site was much higher (association constant > 10(10) M-1). Binding at the E site (introduced into the 80S ribosome by its 60S subunit) was specific for deacylated tRNA(Phe). The association constant of this tRNA to the E site when A and P sites were preoccupied with N-AcPhe-tRNA(Phe) was estimated as (1.7 +/- 0.1) x 10(6) M-1. In the presence of (pU)6, charged tRNA(Phe) bound loosely at the A and P sites, and the transpeptidation level exceeded the binding level due to the exchange with free tRNA from solution. Affinities of aminoacyl-tRNA to the A and P sites in the presence of (pU)6 seem to be the same and much lower than those in the case of poly(U). Without a messenger, binding of the charged tRNA(Phe) to 80S ribosomes was undetectable, although an effective transpeptidation was observed suggesting a very labile binding of the tRNA simultaneously at the A and P sites.  相似文献   

9.
10.
Escherichia coli 70-S ribosomes contain a third site for tRNA binding, additional to the A and P sites. This conclusion is based on several findings. Direct measurements showed that in the presence of poly(U), when both A and P sites are occupied by Ac[14C]Phe-tRNAPhe, ribosomes are capable of binding additionally deacylated non-cognate [3H]tRNA. If ribosomes in the preparation are active enough, the total binding of labeled ligands amounted to 2.5 mol/mol ribosomes. In the absence of poly(U), when the A site can not bind, the P site and the 'additional' site can be filled simultaneously with Ac[14C]Phe-tRNAPhe and deacylated [3H]tRNA, or with [3H]tRNA alone; the total binding exceeds in this case 1.5 mol/mol ribosomes. The binding at the 'additional' site is not sensitive to the template. [3H]tRNA bound there is able to exchange rapidly for unlabeled tRNA in solution. Deacylated tRNA is preferred to the aminoacylated one. The binding of AcPhe-tRNAPhe was not observed there at all. The 3'-end adenosine is essential for the affinity. The function of the 'additional' site is not known, but its existence has to be considered when tRNA . ribosome complexes are studied.  相似文献   

11.
Photoreactive derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at their 3' termini were used to trace the movement of tRNA across the 50S subunit during its transit from the P site to the E site of the 70S ribosome. When bound to the P site of poly(U)-programmed ribosomes, deacylated tRNA(Phe), Phe-tRNA(Phe) and N-acetyl-Phe-tRNA(Phe) probes labeled protein L27 and two main sites within domain V of the 23S RNA. In contrast, deacylated tRNA(Phe) bound to the E site in the presence of poly(U) labeled protein L33 and a single site within domain V of the 23S rRNA. In the absence of poly(U), the deacylated tRNA(Phe) probe also labeled protein L1. Cross-linking experiments with vacant 70S ribosomes revealed that deacylated tRNA enters the P site through the E site, progressively labeling proteins L1, L33 and, finally, L27. In the course of this process, tRNA passes through the intermediate P/E binding state. These findings suggest that the transit of tRNA from the P site to the E site involves the same interactions, but in reverse order. Moreover, our results indicate that the final release of deacylated tRNA from the ribosome is mediated by the F site, for which protein L1 serves as a marker. The results also show that the precise placement of the acceptor end of tRNA on the 50S subunit at the P and E sites is influenced in subtle ways both by the presence of aminoacyl or peptidyl moieties and, more surprisingly, by the environment of the anticodon on the 30S subunit.  相似文献   

12.
When bound to Escherichia coli ribosomes and irradiated with near-UV light, various derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at the 3' terminus form cross-links to 23 S rRNA and 50 S subunit proteins in a site-dependent manner. A and P site-bound tRNAs, whose 3' termini reside in the peptidyl transferase center, label primarily nucleotides U2506 and U2585 and protein L27. In contrast, E site-bound tRNA labels nucleotide C2422 and protein L33. The cross-linking patterns confirm the topographical separation of the peptidyl transferase center from the E site domain. The relative amounts of label incorporated into the universally conserved residues U2506 and U2585 depend on the occupancy of the A and P sites by different tRNA ligands and indicates that these nucleotides play a pivotal role in peptide transfer. In particular, the 3'-adenosine of the peptidyl-tRNA analogue, AcPhe-tRNA(Phe), remains in close contact with U2506 regardless of whether its anticodon is located in the A site or P site. Our findings, therefore, modify and extend the hybrid state model of tRNA-ribosome interaction. We show that the 3'-end of the deacylated tRNA that is formed after transpeptidation does not immediately progress to the E site but remains temporarily in the peptidyl transferase center. In addition, we demonstrate that the E site, defined by the labeling of nucleotide C2422 and protein L33, represents an intermediate state of binding that precedes the entry of deacylated tRNA into the F (final) site from which it dissociates into the cytoplasm.  相似文献   

13.
Number of tRNA binding sites on 80 S ribosomes and their subunits   总被引:1,自引:0,他引:1  
The ability of rabbit liver ribosomes and their subunits to form complexes with different forms of tRNAPhe (aminoacyl-, peptidyl- and deacylated) was studied using the nitrocellulose membrane filtration technique. The 80 S ribosomes were shown to have two binding sites for aminoacyl- or peptidyl-tRNA and three binding sites for deacylated tRNA. The number of tRNA binding sites on 80 S ribosomes or 40 S subunits is constant at different Mg2+ concentrations (5-20 mM). Double reciprocal or Scatchard plot analysis indicates that the binding of Ac-Phe-tRNAPhe to the ribosomal sites is a cooperative process. The third site on the 80 S ribosome is formed by its 60 S subunit, which was shown to have one codon-independent binding site specific for deacylated tRNA.  相似文献   

14.
The complexation of tRNA (adenine-1-)-methyltransferase from Thermus thermophilus HB8 (E.C.2.1.1.36) with Escherichia coli tRNA(Phe) and yeast tRNA1(Val) was investigated in a temperature range from 20 to 90 degrees C. The quantity of methylase subunits bounded with tRNA and the association constant (Ka) were determined by means of fluorescence quenching of the enzyme tryptophane residues by tRNA molecules. The number of enzyme subunits bounded with one tRNA molecule at temperatures 20-70 degrees C is equal to 8 +/- 2. The Ka values increase from (2 divided by 3).10(7) at 20 degrees C up to 8.5.10(7) M-1 at 70 degrees C. The temperature increase from 70 to 90 degrees C causes a decrease in the enzyme specific activity and in Ka values. In the temperature range from 75 to 90 degrees C a cooperative transition of methylase macromolecules into associates was observed. This association is accompanied by an increase of UV-light scattering and of fluorescence polarization coefficient of methylase tryptophane residues. In the absence of tRNA the size of enzyme associates (d) is evaluated to be more than 320 nm (d greater than or equal to lambda-320 nm), in the presence of tRNA-less than 320 nm (d much less than lambda-320 nm). An electron microscopic investigation of methylase and its complexes with tRNA at 20 degrees C revealed disk-like particles with a diameter and height of 8-11 nm and 4-5 nm, respectively. These disk-like methylase preparations dialized against distilled water form flexible polymeric rods with a diameter of 10-12 nm and the length of about several hundreds nm. During complexation of methylase with tRNA, in the same conditions as the dializes was carried out, large associates were not revealed.  相似文献   

15.
A and P sites of Escherichia coli ribosomes were titrated with AcPhe-tRNAPhe, in the absence or presence of tetracycline. The P-site location of the bound AcPhe-tRNA was assessed by means of a quantitative puromycin reaction. The results demonstrate that, in agreement with the generally held view, tetracycline exclusively inhibits the A-site binding, if the statistical number of bound acyl-tRNA molecules per ribosome does not exceed about 0.5. However, above this value the P site becomes sensitive to tetracycline as well. It follows that the tightly coupled 70S ribosomes used in functional studies appear to be functionally heterogeneous, i.e. those P sites which cannot be affected by tetracycline are preferentially occupied by AcPhe-tRNA, whereas higher concentrations of this tRNA species are required to fill tetracycline-sensitive P sites. Furthermore, the results imply that under tRNA saturation conditions the tetracycline inhibition cannot be used as an indicator for the site location of bound tRNA.  相似文献   

16.
In protein synthesis, a tRNA transits the ribosome via consecutive binding to the A (acceptor), P (peptidyl), and E (exit) site; these tRNA movements are catalyzed by elongation factor G (EF-G) and GTP. Site-specific Pb2+ cleavage was applied to trace tertiary alterations in tRNA and all rRNAs on pre- and posttranslocational ribosomes. The cleavage pattern of deacylated tRNA and AcPhe-tRNA changed individually upon binding to the ribosome; however, these different conformations were unaffected by translocation. On the other hand, translocation affects 23S rRNA structure. Significantly, the Pb2+ cleavage pattern near the peptidyl transferase center was different before and after translocation. This structural rearrangement emerged periodically during elongation, thus providing evidence for a dynamic and mobile role of 23S rRNA in translocation.  相似文献   

17.
Y Tsuda  T Nakamoto 《Biochemistry》1977,16(9):1814-1819
Two protein factors (A and B) have been partially purified from Escherichia coli supernatant which, in combination, are more effective than 0.5 M NH4Cl in stimulating ribosomes for AcPhe-tRNA and fMet-tRNA binding, for the puromycin reaction, and for incorporating acetylphenylalanine from AcPhe-tRNA into polypeptide. The factors appear to differ from the initiation factors, the elongation factor EF-T, and ribosomal proteins. Some uncertainty exists as to whether factor B is different from EF-G. To maximize the effect of the factors in initiator tRNA binding, we preincubated the ribosomes with the factors and carried out the binding assay for a short period at 15 degrees C. Maximal stimulation of binding occurred after about a 2-min preincubation at 37 degrees C. Longer preincubation times were required at 15 degrees C, and only slight stimulation was observed after preincubation at 0 degrees C. The extent of stimulation by the factors was not affected when the NH4Cl concentration was increased from 40 to 500 mM in the preincubation. The presence of both the 30S and 50S ribosomal subunits is required for the enhancement of AcPhe-tRNA binding. Polyphenylalanine synthesis carried out without AcPhe-tRNA is inhibited by the factors. It is suggested that the factors may act by inducing a structural rearrangement of the ribosomes.  相似文献   

18.
Kinetic analyses of tRNA binding to the ribosome and of the translocation reaction showed the following results. 1) The activation energy for the P site binding of AcPhe-tRNA to poly(U)-programmed ribosomes is relatively high (Ea = 72 kJ mol-1; 15 mM Mg2+). If only the P site is occupied with deacylated tRNA(Phe), then the E site can be filled more easily with tRNA(Phe) (no activation energy measurable) than the A site with AcPhe-tRNA (Ea = 47 kJ mol-1; 15 mM Mg2+). 2) A ribosome with blocked P and E sites represents a standard state of the elongation cycle, in contrast to a ribosome with only a filled P site. The two states differ in that AcPhe-tRNA binding to the A site of a ribosome with prefilled P and E sites requires much higher activation energy (87 versus 47 kJ mol-1). The latter reaction simulates the allosteric transition from the post- to the pretranslocational state, whereby the tRNA(Phe) is released from the E site upon occupation of the A site (Rheinberger, H.-J., and Nierhaus, K. H. (1986) J. Biol. Chem. 261, 9133-9139). The reversed transition from the pre- to the posttranslocational state (translocation reaction) requires about the same activation energy (90 kJ mol-1). 3) Both elongation factors EF-Tu and EF-G drastically reduce the respective activation energies. 4) The rate of the A site occupation is slower than the rate of translocation in the presence of the respective elongation factors. The data suggest that the A site occupation rather than, as generally assumed, the translocation reaction is the rate-limiting step of the elongation cycle.  相似文献   

19.
The interaction of tRNA with 80 S ribosomes from rabbit liver was studied using biochemical as well as fluorescence techniques. Besides the canonical A and P sites, two additional sites were found which specifically bind deacylated tRNA. One of the sites is analogous to the E site of prokaryotic ribosomes, in that binding of tRNA is labile, does not depend on codon-anticodon interaction, does not protect the anticodon loop from solvent access, and requires the presence of the 3'-terminal adenosine of the tRNA. In contrast, the stability of the tRNA complex with the second site (S site) is high. tRNA binding to the S site is also codon-independent; nevertheless, the anticodon loop is shielded from solvent access. Removal of the 3'-terminal adenosine decreases the affinity of tRNA(Phe) for the S site approximately 50-fold. tRNA(Phe) is retained at the S site during translocation and through poly(Phe) synthesis. Thus, the S site does not seem to be an intermediate site for the tRNA during the elongation cycle. Rather, the tRNA bound to the S site may allosterically modulate the function of the ribosome.  相似文献   

20.
Structural studies have revealed multiple contacts between the ribosomal P site and tRNA, but how these contacts contribute to P-tRNA binding remains unclear. In this study, the effects of ribosomal mutations on the dissociation rate (koff) of various tRNAs from the P site were measured. Mutation of the 30S P site destabilized tRNAs to various degrees, depending on the mutation and the species of tRNA. These data support the idea that ribosome-tRNA interactions are idiosyncratically tuned to ensure stable binding of all tRNA species. Unlike deacylated elongator tRNAs, N-acetyl-aminoacyl-tRNAs and tRNAfMet dissociated from the P site at a similar low rate, even in the presence of various P-site mutations. These data provide evidence for a stability threshold for P-tRNA binding and suggest that ribosome-tRNAfMet interactions are uniquely tuned for tight binding. The effects of 16S rRNA mutation G1338U were suppressed by 50S E-site mutation C2394A, suggesting that G1338 is particularly important for stabilizing tRNA in the P/E site. Finally, mutation C2394A or the presence of an N-acetyl-aminoacyl group slowed the association rate (kon) of tRNA dramatically, suggesting that deacylated tRNA binds the P site of the ribosome via the E site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号