首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA loop repair by Escherichia coli cell extracts   总被引:2,自引:0,他引:2  
The nick-directed DNA repair efficiency of a set of M13mp18-derived heteroduplexes containing 8-, 12-, 16-, 22-, 27-, 45-, and 429-nucleotide loops was determined by in vitro assay. Unpaired nucleotides of each heteroduplex reside within overlapping recognition sites for two restriction endonucleases, permitting independent evaluation of repair occurring on either DNA strand. Our results show that a strand break located either 3' or 5' to the loop is sufficient to direct heterology repair to the nicked strand in Escherichia coli extracts. Strand-specific repair by this system requires Mg2+ and the four dNTPs and is equally efficient on insertions and deletions. This activity is distinct from the MutHLS mismatch repair pathway. Strand specificity and repair efficiency are largely independent of the GATC methylation state of the DNA and presence of the products of mismatch repair genes mutH, mutL, and mutS. This study provides evidence for a loop repair pathway in E. coli that is distinct from conventional mismatch repair.  相似文献   

2.
DNA loop heterologies are products of normal DNA metabolism and can lead to severe genomic instability if unrepaired. To understand how human cells process DNA loop structures, a set of circular heteroduplexes containing a 30-nucleotide loop were constructed and tested for repair in vitro by human cell nuclear extracts. We demonstrate here that, in addition to the previously identified 5' nick-directed loop repair pathway (Littman, S. J., Fang, W. H., and Modrich, P. (1999) J. Biol. Chem. 274, 7474-7481), human cells can process large DNA loop heterologies in a loop-directed manner. The loop-directed repair specifically removes the loop structure and occurs only in the looped strand, and appears to require limited DNA synthesis. Like the nick-directed loop repair, the loop-directed repair is independent of many known DNA repair pathways, including DNA mismatch repair and nucleotide excision repair. In addition, our data also suggest that an aphidicolin-sensitive DNA polymerase is involved in the excision step of the nick-directed loop repair pathway.  相似文献   

3.
In human cells, large DNA loop heterologies are repaired through a nick-directed pathway independent of mismatch repair. However, a 3'-nick generated by bacteriophage fd gene II protein heterology is not capable of stimulating loop repair. To evaluate the possibility that a mismatch near a loop could induce both repair types in human cell extracts, we constructed and tested a set of DNA heteroduplexes, each of which contains a combination of mismatches and loops. We have demonstrated that a strand break generated by restriction endonucleases 3' to a large loop is capable of provoking and directing loop repair. The repair of 3'-heteroduplexes in human cell extracts is very similar to that of 5'-heteroduplex repair, being strand-specific and highly biased to the nicked strand. This observation suggests that the loop repair pathway possesses bidirectional repair capability similar to that of the bacterial loop repair system. We also found that a nick 5' to a coincident mismatch and loop can apparently stimulate the repair of both. In contrast, 3'-nick-directed repair of a G-G mismatch was reduced when in the vicinity of a loop (33 or 46 bp between two sites). Increasing the distance separating the G-G mismatch and loop by 325 bp restored the efficiency of repair to the level of a single base-base mismatch. This observation suggests interference between 3'-nick-directed large loop repair and conventional mismatch repair systems when a mispair is near a loop. We propose a model in which DNA repair systems avoid simultaneous repair at adjacent sites to avoid the creation of double-stranded DNA breaks.  相似文献   

4.
The repair of 12-, 27-, 62-, and 216-nucleotide unpaired insertion/deletion heterologies has been demonstrated in nuclear extracts of human cells. When present in covalently closed circular heteroduplexes or heteroduplexes containing a single-strand break 3' to the heterology, such structures are subject to a low level repair reaction that occurs with little strand bias. However, the presence of a single-strand break 5' to the insertion/deletion heterology greatly increases the efficiency of rectification and directs repair to the incised DNA strand. Because nick direction of repair is independent of the strand in which a particular heterology is placed, the observed strand bias is not due to asymmetry imposed on the heteroduplex by the extrahelical DNA segment. Strand-specific repair by this system requires ATP and the four dNTPs and is inhibited by aphidicolin. Repair is independent of the mismatch repair proteins MSH2, MSH6, MLH1, and PMS2 and occurs by a mechanism that is distinct from that of the conventional mismatch repair system. Large heterology repair in nuclear extracts of human cells is also independent of the XPF gene product, and extracts of Chinese hamster ovary cells deficient in the ERCC1 and ERCC4 gene products also support the reaction.  相似文献   

5.
Mammalian mismatch repair (MMR) systems respond to broad ranges of DNA mismatches and lesions. Kinetic analyses of MMR processing in vitro have focused on base mismatches in a few sequence contexts, because of a lack of general and quantitative MMR assays and because of the difficulty of constructing a multiplicity of MMR substrates, particularly those with DNA lesions. We describe here simple and efficient construction of 11 different MMR substrates, by ligating synthetic oligomers into gapped plasmids generated using sequence-specific N.BstNBI nicking endonuclease, then using sequence-specific nicking endonuclease N.AlwI to introduce single nicks for initiation of 3' to 5' or 5' to 3' excision. To quantitatively assay MMR excision gaps in base-mispaired substrates, generated in human nuclear extracts lacking exogenous dNTPs, we used position- and strand-specific oligomer probes. Mispair-provoked excision along the shorter path from the pre-existing nick toward the mismatch, either 3' to 5' or 5' to 3', predominated over longer path excision by roughly 10:1 to 20:1. MMR excision was complete within 7 min, was highly specific (90:1) for the nicked strand, and was strongly mispair-dependent (at least 40:1). Nonspecific (mismatch-independent) 5' to 3' excision was considerably greater than nonspecific 3' to 5' excision, especially at pre-existing gaps, but was not processive. These techniques can be used to construct and analyze MMR substrates with DNA mismatches or lesions in any sequence context.  相似文献   

6.
7.
Several proteins have been shown to catalyze branch migration (BM) of the Holliday junction, a key intermediate in DNA repair and recombination. Here, using joint molecules made by human RAD51 or Escherichia coli RecA, we find that the polarity of the displaced ssDNA strand of the joint molecules defines the polarity of BM of RAD54, BLM, RECQ1, and RuvAB. Our results demonstrate that RAD54, BLM, and RECQ1 promote BM preferentially in the 3'→5' direction, whereas RuvAB drives it in the 5'→3' direction relative to the displaced ssDNA strand. Our data indicate that the helicase activity of BM proteins does not play a role in the heterology bypass. Thus, RAD54 that lacks helicase activity is more efficient in DNA heterology bypass than BLM or REQ1 helicases. Furthermore, we demonstrate that the BLM helicase and BM activities require different protein stoichiometries, indicating that different complexes, monomers and multimers, respectively, are responsible for these two activities. These results define BM as a mechanistically distinct activity of DNA translocating proteins, which may serve an important function in DNA repair and recombination.  相似文献   

8.
RecA protein promotes an unexpectedly efficient DNA strand exchange between circular single-stranded DNA and duplex DNAs containing short (50-400-base pair) heterologous sequences at the 5' (initiating) end. The major mechanism by which this topological barrier is bypassed involves DNA strand breakage. Breakage is both strand and position specific, occurring almost exclusively in the displaced (+) strand of the duplex within a 15-base pair region of the heterology/homology junction. Breakage also requires recA protein, ATP hydrolysis, and homologous sequences 3' to the heterology. Although the location of the breaks and the observed requirements clearly indicate a major role for recA protein in this phenomenon, the molecular mechanism is not yet clear. The breakage may reflect a DNA structure and/or some form of structural stress within the DNA during recA protein-mediated DNA pairing which either exposes the DNA at this precise position to the action of a contaminating nuclease or induces a direct mechanical break. We also find that when heterology is located at the 3' end of the linear duplex, strand exchange is halted (without DNA breakage) about 500 base pairs from the homology/heterology junction.  相似文献   

9.
DNA mismatch repair and mutation avoidance pathways   总被引:28,自引:0,他引:28  
Unpaired and mispaired bases in DNA can arise by replication errors, spontaneous or induced base modifications, and during recombination. The major pathway for correction of mismatches arising during replication is the MutHLS pathway of Escherichia coli and related pathways in other organisms. MutS initiates repair by binding to the mismatch, and activates together with MutL the MutH endonuclease, which incises at hemimethylated dam sites and thereby mediates strand discrimination. Multiple MutS and MutL homologues exist in eukaryotes, which play different roles in the mismatch repair (MMR) pathway or in recombination. No MutH homologues have been identified in eukaryotes, suggesting that strand discrimination is different to E. coli. Repair can be initiated by the heterodimers MSH2-MSH6 (MutSalpha) and MSH2-MSH3 (MutSbeta). Interestingly, MSH3 (and thus MutSbeta) is missing in some genomes, as for example in Drosophila, or is present as in Schizosaccharomyces pombe but appears to play no role in MMR. MLH1-PMS1 (MutLalpha) is the major MutL homologous heterodimer. Again some, but not all, eukaryotes have additional MutL homologues, which all form a heterodimer with MLH1 and which play a minor role in MMR. Additional factors with a possible function in eukaryotic MMR are PCNA, EXO1, and the DNA polymerases delta and epsilon. MMR-independent pathways or factors that can process some types of mismatches in DNA are nucleotide-excision repair (NER), some base excision repair (BER) glycosylases, and the flap endonuclease FEN-1. A pathway has been identified in Saccharomyces cerevisiae and human that corrects loops with about 16 to several hundreds of unpaired nucleotides. Such large loops cannot be processed by MMR.  相似文献   

10.
Efficient repair of large DNA loops in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1       下载免费PDF全文
Small looped mispairs are efficiently corrected by mismatch repair. The situation with larger loops is less clear. Repair activity on large loops has been reported as anywhere from very low to quite efficient. There is also uncertainty about how many loop repair activities exist and whether any are conserved. To help address these issues, we studied large loop repair in Saccharomyces cerevisiae using in vivo and in vitro assays. Transformation of heteroduplexes containing 1, 16 or 38 nt loops led to >90% repair for all three substrates. Repair of the 38 base loop occurred independently of mutations in key genes for mismatch repair (MR) and nucleotide excision repair (NER), unlike other reported loop repair functions in yeast. Correction of the 16 base loop was mostly independent of MR, indicating that large loop repair predominates for this size heterology. Similarities between mammalian and yeast large loop repair were suggested by the inhibitory effects of loop secondary structure and by the role of defined nicks on the relative proportions of loop removal and loop retention products. These observations indicate a robust large loop repair pathway in yeast, distinct from MR and NER, and conserved in mammals.  相似文献   

11.
The actions of Neurospora endo-exonuclease on double strand DNAs   总被引:3,自引:0,他引:3  
Neurospora crassa endo-exonuclease, an enzyme implicated in recombinational DNA repair, was found previously to have a distributive endonuclease activity with a high specificity for single strand DNA and a highly processive exonuclease activity. The activities of endo-exonuclease on double strand DNA substrates have been further explored. Endo-exonuclease was shown to have a low bona fide endonuclease activity with completely relaxed covalently closed circular DNA and made site-specific breaks in linear double strand DNA at a low frequency while simultaneously generating a relatively high level of single strand breaks (nicks) in the DNA. Sequencing at nicks induced by endo-exonuclease in pBR322 restriction fragments showed that the highest frequency of nicking occurred at the mid-points of two sites with the common sequence, p-AGCACT-OH. In addition, sequencing revealed less frequent nicking at identical or homologous hexanucleotide sequences in all other 54 cases examined where these sequences either straddled the break site itself or were within a few nucleotides on either side of the break site. The exonucleolytic action of endo-exonuclease on linear DNA showed about 100-fold preference for acting in the 5' to 3' direction. Removal of the 5'-terminal phosphates substantially reduced this activity, internal nicking, and the ability of endo-exonuclease to generate site-specific double strand breaks. On the other hand, nicking of the dephosphorylated double strand DNA with pancreatic DNase I stimulated the exonuclease activity by almost 5-fold, but no stimulation was observed when the DNA was nicked by Micrococcal nuclease. Thus, 5'-p termini either at double strand ends or at nicks in double strand DNA are entry points to the duplex from which endo-exonuclease diffuses linearly or "tracks" in the 5' to 3' direction to initiate its major endo- and exonucleolytic actions. The results are interpreted to show how it is possible for endo-exonuclease to generate single strand DNA for switching into a homologous duplex either at a nick or while remaining bound at a double strand break in the DNA. Such mechanisms are consistent with current models for recombinational double strand break repair in eukaryotes.  相似文献   

12.
When ionizing radiation traverses a DNA molecule, a combination of two or more base damages, sites of base loss or single strand breaks can be produced within 1-4 nm on opposite DNA strands, forming a multiply damaged site (MDS). In this study, we reconstituted the base excision repair system to examine the processing of a simple MDS containing the base damage, 8-oxoguanine (8-oxoG), or an abasic (AP) site, situated in close opposition to a single strand break, and asked if a double strand break could be formed. The single strand break, a nucleotide gap containing 3' and 5' phosphate groups, was positioned one, three or six nucleotides 5' or 3' to the damage in the complementary DNA strand. Escherichia coli formamidopyrimidine DNA glycosylase (Fpg), which recognizes both 8-oxoG and AP sites, was able to cleave the 8-oxoG or AP site-containing strand when the strand break was positioned three or six nucleotides away 5' or 3' on the opposing strand. When the strand break was positioned one nucleotide away, the target lesion was a poor substrate for Fpg. Binding studies using a reduced AP (rAP) site in the strand opposite the gap, indicated that Fpg binding was greatly inhibited when the gap was one nucleotide 5' or 3' to the rAP site.To complete the repair of the MDS containing 8-oxoG opposite a single strand break, endonuclease IV DNA polymerase I and Escherichia coli DNA ligase are required to remove 3' phosphate termini, insert the "missing" nucleotide, and ligate the nicks, respectively. In the absence of Fpg, repair of the single strand break by endonuclease IV, DNA polymerase I and DNA ligase occurred and was not greatly affected by the 8-oxoG on the opposite strand. However, the DNA strand containing the single strand break was not ligated if Fpg was present and removed the opposing 8-oxoG. Examination of the complete repair reaction products from this reaction following electrophoresis through a non-denaturing gel, indicated that a double strand break was produced. Repair of the single strand break did occur in the presence of Fpg if the gap was one nucleotide away. Hence, in the in vitro reconstituted system, repair of the MDS did not occur prior to cleavage of the 8-oxoG by Fpg if the opposing single strand break was situated three or six nucleotides away, converting these otherwise repairable lesions into a potentially lethal double strand break.  相似文献   

13.
Jensen LE  Jauert PA  Kirkpatrick DT 《Genetics》2005,170(3):1033-1043
During meiotic recombination in the yeast Saccharomyces cerevisiae, heteroduplex DNA is formed when single-stranded DNAs from two homologs anneal as a consequence of strand invasion. If the two DNA strands differ in sequence, a mismatch will be generated. Mismatches in heteroduplex DNA are recognized and repaired efficiently by meiotic DNA mismatch repair systems. Components of two meiotic systems, mismatch repair (MMR) and large loop repair (LLR), have been identified previously, but the substrate range of these repair systems has never been defined. To determine the substrates for the MMR and LLR repair pathways, we constructed insertion mutations at HIS4 that form loops of varying sizes when complexed with wild-type HIS4 sequence during meiotic heteroduplex DNA formation. We compared the frequency of repair during meiosis in wild-type diploids and in diploids lacking components of either MMR or LLR. We find that the LLR pathway does not act on single-stranded DNA loops of <16 nucleotides in length. We also find that the MMR pathway can act on loops up to 17, but not >19, nucleotides in length, indicating that the two pathways overlap slightly in their substrate range during meiosis. Our data reveal differences in mitotic and meiotic MMR and LLR; these may be due to alterations in the functioning of each complex or result from subtle sequence context influences on repair of the various mismatches examined.  相似文献   

14.
The mismatch repair (MMR) family complexes Msh4-Msh5 and Mlh1-Mlh3 act with Exo1 and Sgs1-Top3-Rmi1 in a meiotic double strand break repair pathway that results in the asymmetric cleavage of double Holliday junctions (dHJ) to form crossovers. This review discusses how meiotic roles for Msh4-Msh5 and Mlh1-Mlh3 do not fit paradigms established for post-replicative MMR. We also outline models used to explain how these factors promote the formation of meiotic crossovers required for the accurate segregation of chromosome homologs during the Meiosis I division.  相似文献   

15.
The DNA mismatch repair (MMR) system recognizes and repairs errors that escaped the proofreading function of DNA polymerases. To study molecular details of the MMR mechanism, in vitro biochemical assays require specific DNA substrates carrying mismatches and strand discrimination signals. Current approaches used to generate MMR substrates are time-consuming and/or not very flexible with respect to sequence context. Here we report an approach to generate small circular DNA containing a mismatch (nanocircles). Our method is based on the nicking of PCR products resulting in single-stranded 3' overhangs, which form DNA circles after annealing and ligation. Depending on the DNA template, one can generate mismatched circles containing a single hemimethylated GATC site (for use with the bacterial system) and/or nicking sites to generate DNA circles nicked in the top or bottom strand (for assays with the bacterial or eukaryotic MMR system). The size of the circles varied (323 to 1100 bp), their sequence was determined by the template DNA, and purification of the circles was achieved by ExoI/ExoIII digestion and/or gel extraction. The quality of the nanocircles was assessed by scanning-force microscopy and their suitability for in vitro repair initiation was examined using recombinant Escherichia coli MMR proteins.  相似文献   

16.
Hopkins BB  Paull TT 《Cell》2008,135(2):250-260
The Mre11/Rad50 complex has been implicated in the early steps of DNA double-strand break (DSB) repair through homologous recombination in several organisms. However, the enzymatic properties of this complex are incompatible with the generation of 3' single-stranded DNA for recombinase loading and strand exchange. In thermophilic archaea, the Mre11 and Rad50 genes cluster in an operon with genes encoding a helicase, HerA, and a 5' to 3' exonuclease, NurA, suggesting a common function. Here we show that purified Mre11 and Rad50 from Pyrococcus furiosus act cooperatively with HerA and NurA to resect the 5' strand at a DNA end under physiological conditions in vitro. The 3' single-stranded DNA generated by these enzymes can be utilized by the archaeal RecA homolog RadA to catalyze strand exchange. This work elucidates how the conserved Mre11/Rad50 complex promotes DNA end resection in archaea and may serve as a model for DSB processing in eukaryotes.  相似文献   

17.
Genetic studies in Saccharomyces cerevisiae predict that the mismatch repair (MMR) factor MSH2-MSH3 binds and stabilizes branched recombination intermediates that form during single strand annealing and gene conversion. To test this model, we constructed a series of DNA substrates that are predicted to form during these recombination events. We show in an electrophoretic mobility shift assay that S. cerevisiae MSH2-MSH3 specifically binds branched DNA substrates containing 3' single-stranded DNA and that ATP stimulates its release from these substrates. Chemical footprinting analyses indicate that MSH2-MSH3 specifically binds at the double-strand/single-strand junction of branched substrates, alters its conformation and opens up the junction. Therefore, MSH2-MSH3 binding to its substrates creates a unique nucleoprotein structure that may signal downstream steps in repair that include interactions with MMR and nucleotide excision repair factors.  相似文献   

18.
Bursts of free radicals produced by ionization of water in close vicinity to DNA can produce clusters of opposed DNA lesions and these are termed multiply damaged sites (MDS). How MDS are processed by the Escherichia coli DNA glycosylases, endonuclease (endo) III and endo VIII, which recognize oxidized pyrimidines, is the subject of this study. Oligonucleotide substrates were constructed containing a site of pyrimidine damage or an abasic (AP) site in close proximity to a single nucleotide gap, which simulates a free radical-induced single-strand break. The gap was placed in the opposite strand 1, 3 or 6 nt 5' or 3' of the AP site or base lesion. Endos III and VIII were able to cleave an AP site in the MDS, no matter what the position of the opposed strand break, although cleavage at position one 5' or 3' was reduced compared with cleavage at positions three or six 5' or 3'. Neither endo III nor endo VIII was able to remove the base lesion when the gap was positioned 1 nt 5' or 3' in the opposite strand. Cleavage of the modified pyrimidine by endo III increased as the distance increased between the base lesion and the opposed strand break. With endo VIII, however, DNA breakage at the site of the base lesion was equivalent to or less when the gap was positioned 6 nt 3' of the lesion than when the gap was 3 nt 3' of the lesion. Gel mobility shift analysis of the binding of endo VIII to an oligonucleotide containing a reduced AP (rAP) site in close opposition to a single nucleotide gap correlated with cleavage of MDS substrates by endo VIII. If the strand break in the MDS was replaced by an oxidized purine, 7,8-dihydro-8-oxoguanine (8-oxoG), neither endo VIII cleavage nor binding were perturbed. These data show that processing of oxidized pyrimidines by endos III and VIII was strongly influenced by the position and type of lesion in the opposite strand, which could have a significant effect on the biological outcome of the MDS lesion.  相似文献   

19.
Tsai YC  Wang Y  Urena DE  Kumar S  Chen J 《DNA Repair》2011,10(4):363-372
Human Rad51 (hRad51) promoted homology recognition and subsequent strand exchange are the key steps in human homologous recombination mediated repair of DNA double-strand breaks. However, it is still not clear how hRad51 deals with sequence heterology between the two homologous chromosomes in eukaryotic cells, which would lead to mismatched base pairs after strand exchange. Excessive tolerance of sequence heterology may compromise the fidelity of repair of DNA double-strand breaks. In this study, fluorescence resonance energy transfer (FRET) was used to monitor the heterology tolerance of human Rad51 mediated strand exchange reactions, in real time, by introducing either G-T or I-C mismatched base pairs between the two homologous DNA strands. The strand exchange reactions were much more sensitive to G-T than to I-C base pairs. These results imply that the recognition of homology and the tolerance of heterology by hRad51 may depend on the local structural motif adopted by the base pairs participating in strand exchange. AnhRad51 mutant protein (hRad51K133R), deficient in ATP hydrolysis, showed greater heterology tolerance to both types of mismatch base pairing, suggesting that ATPase activity may be important for maintenance of high fidelity homologous recombination DNA repair.  相似文献   

20.
Small looped mispairs are corrected by DNA mismatch repair. In addition, a distinct process called large loop repair (LLR) corrects heteroduplexes up to several hundred nucleotides in bacteria, yeast and human cells, and in cell-free extracts. Only some LLR protein components are known, however. Previous studies with neutralizing antibodies suggested a role for yeast DNA polymerase δ (Pol δ), RFC and PCNA in LLR repair synthesis. In the current study, biochemical fractionation studies identified FEN1 (Rad27) as another required LLR component. In the presence of purified FEN1, Pol δ, RFC and PCNA, repair occurred on heteroduplexes with loops ranging from 8 to 216 nt. Repair utilized a 5′ nick, with correction directed to the nicked strand, irrespective of which strand contained the loop. In contrast, repair of a G/T mismatch occurred at low levels, suggesting specificity of the reconstituted system for looped mispairs. The presence of RPA enhanced reactivity on some looped substrates, but RPA was not required for activity. Although additional LLR factors remain to be identified, the excision and resynthesis steps of LLR from a 5′ nick can be reconstituted in a purified system with FEN1 and Pol δ, together with PCNA and its loader RFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号