首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hedgerows as habitat corridors for forest herbs in central New York, USA   总被引:13,自引:1,他引:12  
1 Samples from 32 hedgerows ( c.  6 m wide, with full-grown trees) in central New York included 39 forest herb taxa, comprising nearly 70% of the forest herb taxa found in adjacent forest samples.
2 We sampled three types of hedgerow. Two types were attached to forest: remnant hedgerows ( n  = 14), and regenerated hedgerows ( n  =  11 ) that had grown up spontaneously between open fields in the last 50 years. There were no significant differences between remnant and regenerated hedgerows in the richness or abundance of forest herbs, presumably indicating colonization of regenerated hedgerows. Such colonization implies that hedgerows serve a corridor function.
3 The species composition of forest herbs in hedgerows attached to forest stands showed a strong affinity with that of the adjacent stand, both for remnant and regenerated hedgerows.
4 There was a distance effect within hedgerows. Richness of forest herbs and similarity of composition to forest declined with distance along the hedgerow from forest, implying colonization from the adjacent attached stand.
5 The third type of hedgerow sampled, isolated remnants ( n  = 7), was not lower in richness or abundance of forest herbs than hedgerows attached to forest.  相似文献   

2.
Jaan Liira  Taavi Paal 《Plant Ecology》2013,214(3):455-470
Woody corridors in fragmented landscapes have been proposed as alternative habitats for forest plants, but the great variation in species-specific responses blurs the overall assessment. The aim of this study was to estimate the dispersal success of forest-dwelling plants from a stand into and along an attached woody corridor, and to explain the observed patterns from the point of view of species’ dispersal traits and corridor properties. We sampled 47 forest–corridor transects in the agricultural landscapes of southeastern Estonia. Regionally common forest-dwelling species (observed in at least 10 % of seed-source forests) were classified on the basis of their ecological response profile—forest-restricted species (F-type) and forest-dwelling generalists (G-type). Species richness and the proportion of F-type species decreased sharply from the seed-source forest core to the forest edge and to the first 10–15 m of the corridor, while G-type species richness remained constant throughout the transect. Corridor structure had a species-specific effect—F species were promoted by old (≥50 years) and wide (≥10 m) corridors, while G species were supported by young and narrow corridors with ditch-related soil disturbances. Moderate shade (canopy cover <75 %) was optimal for all forest-dwelling species. Large dispersule weight, and not seed weight, dispersal vector or Ellenberg’s indicator values, was the trait that differentiated F species from G species. We conclude that most woody corridors are only dispersal stepping-stone habitats for habitat generalist species, and not for specialists. Only century old corridors can relieve the dispersal limitation of forest-restricted species.  相似文献   

3.
Corridor design is a centripetal conservation tool to facilitate movement between fragmented patches. Increases in anthropogenic activity have caused degradation in forest connectivity, influencing animal movement to a small degree. Laljhadi-Mohana wildlife corridor (LMWC), a corridor between Shuklaphanta National Park (Nepal) and Dudhwa National Park (India) created to be used by Panthera tigris and Elephas maximus in western Nepal, is under pressure of anthropogenic change. Using current knowledge, we analyzed land cover changes (LCC) of LMWC between 2002 and 2012. We used ERDAS IMAGINE 9.2 and Arc GIS 9.2 to process satellite images, and occupancy survey to assess status of corridor. We classified land cover into dense forest, sparse forest, cultivation, water bodies, grassland, expose surfaces, and sand bank as structural attributes of the corridor. Our analysis found dense forest area was reduced by 18.35% in a decade while cultivation and sparse forest increased by 10.15% and 8.89%, respectively. Illegal forest encroachment, resource extraction, grazing pressure, invasive species, and flood were major drivers of forest change. The null occupancy model estimated the highest detection probability of Elephas maximus (0.48 ± 0.08) and the lowest of Axis axis (0.20 ± 0.08). Incorporating site covariates improved occupancy estimates of Sus scrofa (0.82), Axis axis (0.76), Elephas maximus (0.76), Boselaphus tragocamelus (0.66), and Panthera pardus (0.55). Distance to cultivation was the most influential covariate, supported by the expansion of cultivated land in the corridor. LMWC is a functional wildlife corridor despite a decline in forest cover. This decline influenced the number and detection rates of large mammals, instigating crop raiding and conflict. Mitigation measures on LCC drivers, particularly forest encroachment, can improve the functional status of LMWC and raise detection rates of large mammals in future studies.  相似文献   

4.
The increasing rate of urban sprawl continues to fragment European landscapes threatening the persistence of native woodland plant communities. The dynamics of woodland edges depend on the characteristics of woodland patches and also on landscape context. Our aim was to assess the extent of edge influences on the understorey vegetation of small native woodlands in rural and urban landscapes. The study was carried out in two cities of north-western France. Ten comparable woodlands, each of about 1.5 ha, were surveyed; five were situated adjacent to crops and five adjacent to built-up land. Vascular plant species were recorded in 420 3 × 3 m plots placed at seven different distances from the edge (from 0 to about 45 m from the edge). Soil pH, light levels, level of disturbance and tree and shrub cover were also recorded. Plant species were first classified as non-indigenous or indigenous and then three groups of indigenous species were distinguished according to their affinity for forest habitat (forest specialists, forest generalists and non-forest species). We inferred certain ecological characteristics of understorey vegetation by using Ellenberg values. An inter-class correspondence analysis was carried out to detect patterns of variation in plant community composition. Linear mixed models were used to test the effects of adjacent land use, distance from the edge and their interactions on the species richness of the different groups and on the ecological characteristics of vegetation. Total species richness, richness of forest generalists and of non-forest species decreased from edge to interior in both urban and rural woodlands. The number of non-indigenous species depended mainly on urban–rural landscape context. Urban woodland edges were not as rich in forest specialists as rural edges. More surprisingly, the number of forest specialists was higher in rural edges than in rural interiors. Community composition was mainly affected by urban–rural context and to a lesser degree by the edge effect: the community composition of urban edges resembled that of urban interiors whereas in rural woodlands vegetation near edges (up to 10 m) strongly differed from interiors with a pool of species specific to edges. Urban woodland vegetation was more nitrophilous than rural vegetation in both edges and interiors. A major difference between urban and rural vegetation was the distribution of basiphilous species according to distance from the edge. Generally edge vegetation was more basiphilous than interior vegetation however the presence of basiphilous species fell off quickly with distance from the edge in rural woodlands (in the first 10–15 m) and more slowly (from 25 m onwards) in urban woodlands. This pattern was linked to variation in measured soil pH. As regards the conservation of flora in small native woodlands, it appeared that invasion of exotic and non-forest species was currently limited in both urban and rural landscape contexts but might pose problems in the future, especially in urban woodlands. Forest species were not negatively affected by the edge effect and indeed edges seemed to provide important habitats for this group. Hence conservationists should pay particular attention to the protection of edges in urban woodlands.  相似文献   

5.
Abstract. Recent studies indicate that, in the present-day agricultural landscape, the floristic composition of young woodland communities can be fully developed if the woods are situated adjacent to ancient woodlands. Four 70-yr-old deciduous woods in the Carpathian foothills were examined in relation to three adjacent ancient oak-hornbeam and oak-pine woodlands, which are the nearest source of woodland species diaspores. On the basis of data from 208 plots, the frequencies of various species groups in the field layer of the woods were analysed. The dependence of vegetation differentiation within the recent woods on (a) distance to the border with the ancient woodlands and (b) light intensity was examined by Partial Detrended Canonical Correspondence Analysis (DCCA). A significant relation between distance to ancient woodland and species composition was found for recent woods on rich brown soils. The vegetatively propagating species, myrmecochores and small autochores attained higher cover values near ancient woodland; endozoochores and anemochores were most abundant further away. Within recent, more open woods on poor podzolic and leached brown soils, colonisation is strongly inhibited by dense growth of Carex brizoides; here, vegetation regeneration is much slower than in woods on rich soils much further away from the source of diaspores.  相似文献   

6.
The demise of coppicing in UK ancient woodlands, combined with the planting of non-native, fast-growing conifers in the twentieth century, heightens the potential recharge value of ground flora seed banks. Soil cores from adjoining semi-natural and conifer-containing stands in four lowland ancient woods in central England were removed to establish seed bank species richness. During a fourteen-month germination trial soil from two depths yielded 6554 seedlings from 81 species, ten of which showed a strong affinity for ancient woodland conditions. Juncus effusus accounted for 80% of emergent seeds whilst 23 other species, including Lysimachia nummularia and Potentilla sterilis, were represented by only one individual. Species richness is described by a model that explains 40% of observed variance (P < 0.00001). The model has three significant variables: species richness increases as soil pH rises, and decreases with both depth and increasing time since the most recent planting/disturbance event. No difference was found in the density of seeds from species common to paired semi-natural and conifer-containing stands that were separated only by a woodland ride, suggesting prior management and environmental conditions have a greater influence on seed banks than current stand type. Sørensen similarity index values revealed poor congruence between above-ground vegetation and species in the seed bank. Taking pH measurements in conifer stands identified as younger in terms of planting/disturbance may help locate areas where greater numbers of species (including woodland specialists) are located. Caution is required, however, as these seed banks may also contain non-target, competitive species that may swamp the regeneration of woodland specialists.  相似文献   

7.
Aim To compare bird abundances in woodlands along gradients from the city centre to the peri‐urban area. To evaluate the importance of the proportion of woodland within the city and in the peri‐urban landscape to forest bird communities breeding in urban woodlands. To test whether fragmentation effects on birds were linked to the type of peri‐urban matrix. Location A total of 34 Swedish cities with > 10,000 inhabitants in south‐central Sweden. The study area covered 105,000 km2, in which 84% of the Swedish population of 9.1 million lives. Methods Repeated point count surveys were conducted in 2004 in a total of 474 woodlands. General linear models were used to test for possible differences in abundance along urban to peri‐urban gradients, and to regress bird abundances in local urban woodlands on: (1) total woodland cover in the city, (2) total woodland cover in the peri‐urban landscape, (3) the interaction between woodland cover in the city and in the peri‐urban area, (4) region, and (5) human density. Results More than 12,000 individuals of 100 forest bird species were recorded. Of the 34 most common species detected, 13 bird species had higher abundances in urban than in peri‐urban woodlands, and seven species showed the opposite trend. The bird community of urban woodlands was characterized by species associated with deciduous forests and tree nesters, whereas the bird community of peri‐urban woodlands was characterized by species associated with coniferous woodland and ground nesters. Twelve species were significantly linearly associated with the proportion of urban woodland and/or the proportion of peri‐urban woodland, and a further eight species were associated with the interaction between these two factors. Local breeding bird abundances of four species were significantly positively associated with the proportion of urban woodland only in farmland‐dominated landscapes. Main conclusions Fragmentation effects on some urban birds are linked to the type of peri‐urban matrix. In farmland landscapes, peri‐urban woodlands may have been too scarce to act as a source of bird immigrants to fragmented urban woodlands. To maintain populations of specialized forest birds within cities in landscapes dominated by agriculture, it is of paramount importance to conserve any remaining urban woodlands.  相似文献   

8.
Abstract. We studied gradients in field layer vegetation across ecotone‐type borderlines between 12 ancient woodlands and adjacent secondary deciduous woodlands on former arable land. The aim of the study was to determine how distance from the borderline influences species distributions as compared with soil factors and degree of canopy closure. Correspondence Analysis showed that distance from the borderline is closely related to the first ordination axis at all study sites. Canonical Correspondence Analysis with variation partitioning revealed that distance from the borderline was the single most important factor in explaining vegetation variation. In general, the results suggest the following order of decreasing importance: Distance from the borderline < Soil reaction < Soil nitrogen < Soil moisture < Canopy cover. However, the sum of soil variables, as estimated by weighted averages of Ellenberg indicator values for moisture, reaction and nitrogen, accounted for as much as ca. 50–70% of the total variation explained by environmental variables. Important gradients in field layer vegetation are due to a decrease in typical woodland species and an increase in other species with increasing distance from the ancient woodland. The results suggest dispersal limitation of woodland species as an important determinant of secondary forest succession. However, the importance of distance to species distributions decreases with increasing stand age as most woodland species gradually colonize the recent woodlands. After 70 yr, ca. 50 % of the woodland species present at a site showed complete colonization within 50 m from the ancient woodland border.  相似文献   

9.
Invasive African olive, Olea europaea ssp. cuspidata (Wall. ex G.Don) Cif., forms increasingly dense stands between initial and mature stages of invasion, leading to a progressive decline in native plant diversity. Here, we examined the response of leaf-litter invertebrates to increasing time since olive invasion. We compared invertebrate assemblages among early-stage olive (0–7 years since invasion, scattered olive shrubs and seedlings in native woodland), mature olive (>15 years, uniform olive stands dominated by multi-trunked trees) and uninvaded native grassy woodland habitats (both mature stands and edges) in a critically endangered ecological community of south-eastern Australia. Invertebrate species richness was significantly reduced in mature olive compared with early-stage olive and mature native woodland habitats. Species richness did not differ significantly between early-stage olive habitat and mature native woodland, demonstrating resistance in species richness to initial invasion. Invertebrate species composition of native woodlands differed significantly from both mature olive and early-stage olive habitats, demonstrating a lack of resistance in species composition to initial olive invasion. Compositional differences were principally driven by reduced abundances within Coleoptera, Hymenoptera and Polyxenida in mature olive habitat compared with mature native woodland. These changes were significantly correlated with an increase in bare ground, plant canopy cover and litter depth, and higher moisture and lower temperature within leaf litter, in mature olive habitat. Our findings show that negative ecological impacts of invasive African olive extend beyond plants to leaf-litter invertebrate assemblages and that significant impacts on invertebrate species assemblage composition occur early in the invasion process.  相似文献   

10.
Distributions of lucidophyllous species are limited due to the fragmentation of laurel forest. On Komayama Hill in central Japan, we evaluated the colonization of typical lucidophyllous vascular plants from a 350-year-old laurel forest into adjacent abandoned secondary forest for conservation and restoration purposes. A total of 14 consecutive subplots were established along the vegetation border between the two forests (length, 30 m; width, 5 m), extending 70 m into the secondary forest; 18 quadrats of old-growth forest were surveyed. Edge effects of old-growth forest were found to play an important role in re-establishing lucidophyllous saplings and seedlings in the secondary forest. In particular, the abundances of the four dominant canopy species of the old-growth forest significantly decreased with increasing distance. Hence, they are expected to colonize further into the secondary forest and, ultimately, to dominate the canopy. However, the number of lucidophyllous species did not change with distance. Species such as Ficus nipponica, Damnacanthus indicus, Ilex integra, and Lemmaphyllum microphyllum were near-completely or completely limited to the old-growth forest. They are known to be negatively affected by forest fragmentation and were observed to be struggling to colonize the exterior of the old-growth forest even after 60 years of abandonment. Their absence highlighted the limited colonization capacities of some old-growth forest species and underlined the time required for habitat restoration following human disturbance. We conclude that it is important to consider the population dynamics of dominant canopy species and the colonization of these interior species when assessing the habitat expansion of lucidophyllous species and hence the restoration of degraded lands.  相似文献   

11.
Forests understories in Europe are known to generally resist invasion, though some alien plants do invade woodland communities. Here we focused on the impact of the widespread invasive annual Impatiens glandulifera, common along watercourses, but recently spreading in forests up to timberline. We investigated its impact on plant–soil feedback and ecosystem functioning. We recorded >40 variables focusing on: soil characteristics, including micro- and macro-nutrients; characteristics of litter layer and enzyme activity in litter; and richness and species composition of the forest understory. Three treatments were followed for 3 years: plots invaded by I. glandulifera; adjacent invader removal plots within the invaded area; and spatially separated uninvaded plots outside the invaded area. The effect of year-to-year variation was generally greater than that of the treatments, especially in soil and litter characteristics. Copper and boron were higher in invaded than invader removal and uninvaded plots, though in quantities that are unlikely to harm other plants. We found no effect of I. glandulifera on litter characteristics or enzyme activity. Despite almost 80% cover of I. glandulifera, we did not detect any difference in species richness and total vegetation cover between invaded and uninvaded plots. The floristic composition differed among the uninvaded, invader removal and invaded plots across 3 years. Our results indicate that the effect of I. glandulifera on the forest community studied was minor, and largely resulted from its increased shading to other plant species. In conclusion, we show how misleading the evaluation of impacts can be if based on a single season.  相似文献   

12.
The abandonment of traditional forest management and the conversion of lowland woodlands from coppices to high forests may lead to a reduction in plant diversity. We studied long-term changes in semi-natural lowland woodland vegetation in the Czech Republic (Central Europe) by resampling 29 vegetation plots (relevés) first sampled in the 1950s. The results indicated a shift to shady plant communities (i.e. loss of heliophilous species and expansion of shade-tolerant species), caused by an increase in the tree and shrub layer canopy due to the expansion of deciduous tree species. At the same time, species richness (alpha diversity) had declined significantly, though we noted no signs of homogenisation in the vegetation cover. Species typical of nutrient-rich habitats and alien and/or invasive species had expanded. We confirmed the shift in vegetation composition, which was probably caused by changes in lowland woodland forest management (decline in coppicing), eutrophication (deposition of atmospheric nitrogen, agricultural runoff) and disturbance effects of game, especially wild boar (Sus scrofa).  相似文献   

13.
The effect of transforming natural habitat to commercial land uses can be mitigated by implementing ecological networks (ENs) in production landscapes. However, EN ability to conserve biodiversity is potentially influenced by past and present disturbances, and spatial configuration of habitat patches. Here, we investigated how plant assemblages of a subtropical EN in a timber production landscape in South Africa respond to disturbance history (i.e. natural vs. recovering after removal of Pinus spp.), mowing in firebreaks (i.e. 30 m wide grassy strips intended to stop spread of fires in plantations), and three design parameters: corridor width, distance to protected area boundary, and context i.e. proportion eucalypt compartments within 500 m radius. Reference sites were in the adjacent iSimangaliso Wetland Park, a protected area (PA). Past disturbances and the current practice of mowing in firebreaks significantly influenced plant species composition, but not plant species richness. Plant dominance was greatest in mowed firebreaks, but similar between natural and recovering grassland. None of the design variables affected plant species richness, or composition. However, dominance was significantly and negatively correlated with corridor width, and positively correlated with context. Hence, sites are ordered in terms of their biodiversity value from greatest to lowest: natural areas > recovering areas > firebreaks. Based on these results, natural grassland in wide, well-connected corridors should have greatest conservation priority. We recommend that past disturbances, and current management practices should be taken into account and integrated into the design of future ENs. Such an approach is necessary for effective biodiversity conservation in production landscapes.  相似文献   

14.
Acacia senegal is endemic to dry forest and woodland ecosystems of Sub-Saharan Africa and provides both ecological and socio-economic benefits. However, these ecosystems are threatened by escalating human disturbances and fragmentation. To investigate the human impacts on genetic diversity and structure of A. senegal, we studied genetic variability and differentiation of 330 individual trees from 11 natural A. senegal populations, grouped into lightly and heavily disturbed, using 12 polymorphic nuclear microsatellite markers. Gene diversity (H E ) ranged from H E = 0.570 to H E = 0.632. Significant differences (P < 0.05) between the levels of disturbances are reported for mean gene diversity, number of alleles and allelic richness with lightly disturbed populations showing higher values. Overall, the indirect estimates of average outcrossing rates ranged from 0.794 (Kiserian) to 0.999 (Kampi ya Moto) with a mean of 0.997 suggesting a predominantly outcrossing species. There was no significant relationship (P > 0.05) detected between genetic and geographic distances, showing lack of isolation by distance. Analysis of population structure using unweighted pair group method with arithmetic mean and Bayesian model suggests presence of three gene pools as most probable, although most individuals showed mixed ancestry. The diversity and genetic structure reported in this study revealed negative impacts of human disturbance on A. senegal within this ecosystem. We recommend in-situ conservation strategies to safeguard the woodland ecosystem from further deforestation.  相似文献   

15.
Saproxylic beetle diversity is high at the Cabañeros National Park (central Spain), where woodland habitats exhibit remarkable heterogeneity. Our aim was to explain the diversity of saproxylic beetles, focusing on species turnover among mature woodland types. We surveyed five woodland types that represented the heterogeneity of the park’s woodland habitats. Beetles were collected using window traps over a period of 20 months. The Jaccard Similarity Index was used as indirect value of beta diversity among woodlands and to test the relation between species turnover and geographical distance. We also identified the contribution of species turnover to landscape diversity by using a partitioning model. Moreover, the presence of mixed woodlands (more than one tree species) allowed us to attempt to valorise the effect of tree species (coupled with their historical management) on species turnover among woodlands. Finally, we looked for different saproxylic beetle preferences for habitat and tree species using an indicator value method. We found that saproxylic beetle species composition varied significantly among the studied woodlands. The variation in species turnover was independent from the distance among woodlands, which suggested that beetle dispersal abilities could not explain this high turnover. Tree species within woodlands were a key factor that increased diversity turnover in woodlands and, consequently, the diversity of the park. Moreover, we found saproxylic beetle species that had different habitat and tree species preferences. We conclude that woodland heterogeneity (highly affected by woodland composition) seems to be the driving force for saproxylic beetle diversity in this protected area.  相似文献   

16.
Herbivory is an important factor to generate spatial mosaics with variations in a plant community composition and organization. The objective of this work was to determine the impact of Atta vollenweideri Forel 1893 nests on herbaceous and shrub vegetation in a degraded native forest of the Espinal ecoregion. The study was carried out in the Protected Area and Multiple Use Nature Reserve called Estancia “El Carayá” (Entre Ríos, Argentina). Ten A. vollenweideri nests were selected by simple random sampling through internal roads, and two transects were drawn from the center of the nest (0 m) up to 60 m away in opposite directions. The line intercept method was used to quantify the percentage of vegetation cover of herbaceous and shrub species, while the floristic composition was estimated by the Canfield method. Afterwards, a nonparametric test between positions and a conglomerate analysis to evaluated distance were applied. Grass species, legumes, and sedges fell in the adjacent areas to nests, highlighting the bare soil at the crest and base of the nests. Fifteen plant species were identified, and two families correspond to monocotyledonous and dicotyledonous species. In conclusion, the nests of A. vollenweideri affect the community of herbaceous and shrub vegetation of the studied degraded native forest of the Espinal ecoregion since these ants perform a high selection of herbaceous species considered as pioneers of plant successions.  相似文献   

17.
Potential impacts of an exotic grass, Hemarthria altissima, on restoration of wet prairie community structure (species richness and cover of indicator species) and assembly processes (temporal turnover rates of plant species) on the Kissimmee River floodplain in Central Florida, USA, were evaluated over a 12-year period before and after restoration of hydrologic regimes (2001), and implementation of herbicide treatments (2006–2007) to control its spread. Thresholds for impacts were derived from comparisons of sample sites with variable levels of H. altissima cover. Prior to herbicide treatments, cover of H. altissima exhibited a logistic increase over time, with peak colonization and expansion occurring during major flood events. Mean post-restoration cover of three native wet prairie indicator species (Polygonum punctatum, Panicum hemitomon, and Luziola fluitans) increased to 37.8 ± 3.4 % in plots in which H. altissima cover was <12 %, and did not exceed 15 % in any plots with H. altissima cover >30 %. Prior to and after herbicide treatments, these indicator species largely accounted for observed differences in wet prairie community structure (i.e., cover of wetland forbs and grasses) between heavily infested sites and plots with low or no cover of H. altissima. The cover threshold at which H. altissima began to have these community-level effects was 40–50 %, but lower species richness was found only where H. altissima cover was >80 %. Increasing cover of H. altissima led to a significant decline in temporal turnover rates of plant species (P < 0.001, r2 = 0.10), but also was largely due to plots with very high (>75 %) cover of H. altissima. Mean temporal turnover rates of plant species increased significantly (P = 0.03) after herbicide treatments and subsequently were highest during an ensuing flood pulse. However, 2–3 years after herbicide treatments, regrowth of H. altissima reestablished high cover (mean = 59 ± 9.5 %) in over half of the treated plots. The ability of H. altissima to establish dominant cover in restored hydrologic conditions on the Kissimmee River floodplain, and documented regrowth following herbicide treatments, increase the potential for this exotic grass species to be a pervasive threat to successful reestablishment of wet prairie community structure and assembly processes.  相似文献   

18.
Agricultural landscapes can be defined as mosaics of landscape elements which are affected by farming practices. Woodland habitats, even though they are managed, are amongst the most stable elements of agricultural landscapes and can play a key role in the maintenance of biodiversity. This study of the ground beetle (carabid) communities of woodlands and woody linear features in a Scottish agricultural landscape shows that these habitats contribute significantly to the overall landscape diversity of these beetles. Communities in woods and hedgerows display the same species diversity and are both characterized by the presence of forest species. The main factors constraining carabid communities in both environments are the grazing intensity and, to a lesser extent, the type of soil. Heavily grazed locations are characterized by the occurrence of grassland species while forest species are restricted to ungrazed locations. At the landscape scale, the distribution of the forest species is limited by spatial isolation, indicating that there are insufficient functional links between woodland habitats in the study area. Isolation could be compensated for either by a better control of grazing so that linear features can be used as dispersal corridors for forest carabids or by planting more linear features and woods in the area.  相似文献   

19.
Invasive plants have wide-ranging impacts on native systems including reducing native plant richness and altering soil chemistry, microbes, and nutrient cycling. Increasingly, these effects are found to linger long after removal of the invader. We examined how soil chemistry, bacterial communities, and litter decomposition varied with cover of Euonymus fortunei, an invasive evergreen liana, in two central Kentucky deciduous forests. In one forest, E. fortunei invaded in the late 1990s but invasion remained patchy and we paired invaded and uninvaded plots to examine the associations between E. fortunei cover and our response variables. In the second forest, E. fortunei had completely invaded the forest by 2005; areas where it had been selectively removed by 2010 were paired with an adjacent invaded plot. Where E. fortunei had patchily invaded, E. fortunei patches had up to 3.5× nitrogen, 2.7× carbon, and 1.9× more labile glomalin in soils than uninvaded plots, whereas there were no differences in soil characteristics between invaded and removal plots. In the patchily invaded forest, bacterial community composition varied among invaded and non-invaded plots, whereas bacterial communities did not vary among invaded and removal plots. Finally, E. fortunei leaf litter decomposed faster (k = 4.91 year?1) than the native liana (k = 3.77 year?1), Vitis vulpina; decomposition of both E. fortunei and V. vulpina was faster in invaded (k = 7.10 year?1) than removal plots (k = 4.77 year?1). Our findings suggest that E. fortunei invasion increases the rate of leaf litter decomposition via high-quality litter, alters the decomposition environment, and shifts in the soil biotic communities associated with a dense mat of wintercreeper. Land managers with limited resources should target the densest mats for the greatest restoration potential and remove wintercreeper patches before they establish dense mats.  相似文献   

20.
Extensive afforestation of agricultural areas has increased the importance of green corridors as a dispersal network. We tested the effect of spatiotemporal connectivity, edge effect and habitat structural quality of wooded corridors on the long-term immigration success of forest specialist plants relative to the performance of forest generalists. In agricultural landscapes of central and southern Estonia, we sampled 28 historically connected and 52 isolated tree lines and alleys with a minimum age of 50 years, and 93 edges of ancient forests. The regional pool of common forest plants was compiled using species’ frequency data in 91 ancient forests. Both landscape connectivity and habitat quality affected the richness of response groups, but specialists and generalists responded to different drivers. Forest specialists required long-term neighbourhoods of ancient forest and benefited from a direct connection between forest and corridor. Habitat generalists reacted positively to the recently modified structure of the landscape. When a corridor was connected to forest, the dual edge in the corridor did not result in an increased negative edge effect on forest specialist arrival. Even if both specialists and generalists required wide corridors with optimum shade, forest specialists also benefited from mature overstorey and outward overhanging branches, whereas forest generalists used disturbance-created microhabitats. We conclude that only wooded corridors with long-term connectivity to seed source forests and widely branched tree canopies will function as a green infrastructure supporting forest-specific biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号