首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Z M Zheng  P He    C C Baker 《Journal of virology》1996,70(7):4691-4699
Alternative splicing is an important mechanism for the regulation of bovine papillomavirus type 1 (BPV-1) gene expression during the virus life cycle. However, one 3' splice site, located at nucleotide (nt) 3225, is used for the processing of most BPV-1 pre-mRNAs in BPV-1-transformed C127 cells and at early to intermediate times in productively infected warts. At late stages of the viral life cycle, an alternative 3' splice site at nt 3605 is used for the processing of the late pre-mRNA. In this study, we used in vitro splicing in HeLa cell nuclear extracts to identify cis elements which regulate BPV-1 3' splice site selection. Two purine-rich exonic splicing enhancers were identified downstream of nt 3225. These sequences, designated SE1 (nt 3256 to 3305) and SE2 (nt 3477 to 3526), were shown to strongly stimulate the splicing of a chimeric Drosophila doublesex pre-mRNA, which contains a weak 3' splice site. A BPV-1 late pre-mRNA containing the nt 3225 3' splice site but lacking both SE1 and SE2 was spliced poorly, indicating that this 3' splice site is inherently weak. Analysis of the 3' splice site suggested that this feature is due to both a nonconsensus branch point sequence and a suboptimal polypyrimidine tract. Addition of SE1 to the late pre-mRNA dramatically stimulated splicing, indicating that SE1 also functions as an exonic splicing enhancer in its normal context. However, a late pre-mRNA containing both SE1 and SE2 as well as the sequence in between was spliced inefficiently. Further mapping studies demonstrated that a 48-nt pyrimidine-rich region immediately downstream of SE1 was responsible for this suppression of splicing. Thus, these data suggest that selection of the BPV-1 nt 3225 3' splice site is regulated by both positive and negative exonic sequences.  相似文献   

2.
Alternative splicing is a critical component of the early to late switch in papillomavirus gene expression. In bovine papillomavirus type 1 (BPV-1), a switch in 3' splice site utilization from an early 3' splice site at nucleotide (nt) 3225 to a late-specific 3' splice site at nt 3605 is essential for expression of the major capsid (L1) mRNA. Three viral splicing elements have recently been identified between the two alternative 3' splice sites and have been shown to play an important role in this regulation. A bipartite element lies approximately 30 nt downstream of the nt 3225 3' splice site and consists of an exonic splicing enhancer (ESE), SE1, followed immediately by a pyrimidine-rich exonic splicing suppressor (ESS). A second ESE (SE2) is located approximately 125 nt downstream of the ESS. We have previously demonstrated that the ESS inhibits use of the suboptimal nt 3225 3' splice site in vitro through binding of cellular splicing factors. However, these in vitro studies did not address the role of the ESS in the regulation of alternative splicing. In the present study, we have analyzed the role of the ESS in the alternative splicing of a BPV-1 late pre-mRNA in vivo. Mutation or deletion of just the ESS did not significantly change the normal splicing pattern where the nt 3225 3' splice site is already used predominantly. However, a pre-mRNA containing mutations in SE2 is spliced predominantly using the nt 3605 3' splice site. In this context, mutation of the ESS restored preferential use of the nt 3225 3' splice site, indicating that the ESS also functions as a splicing suppressor in vivo. Moreover, optimization of the suboptimal nt 3225 3' splice site counteracted the in vivo function of the ESS and led to preferential selection of the nt 3225 3' splice site even in pre-mRNAs with SE2 mutations. In vitro splicing assays also showed that the ESS is unable to suppress splicing of a pre-mRNA with an optimized nt 3225 3' splice site. These data confirm that the function of the ESS requires a suboptimal upstream 3' splice site. A surprising finding of our study is the observation that SE1 can stimulate both the first and the second steps of splicing.  相似文献   

3.
4.
5.
Alternative splicing of the type II procollagen gene (COL2A1) is developmentally regulated during chondrogenesis. Chondroprogenitor cells produce the type IIA procollagen isoform by splicing (including) exon 2 during pre-mRNA processing, whereas differentiated chondrocytes synthesize the type IIB procollagen isoform by exon 2 skipping (exclusion). Using a COL2A1 mini-gene and chondrocytes at various stages of differentiation, we identified a non-classical consensus splicing sequence in intron 2 adjacent to the 5' splice site, which is essential in regulating exon 2 splicing. RNA mapping confirmed this region contains secondary structure in the form of a stem-loop. Mutational analysis identified three cis elements within the conserved double-stranded stem region that are functional only in the context of the natural weak 5' splice site of exon 2; they are 1) a uridine-rich enhancer element in all cell types tested except differentiated chondrocytes; 2) an adenine-rich silencer element, and 3) an enhancer cis element functional in the context of secondary structure. This is the first report identifying key cis elements in the COL2A1 gene that modulate the cell type-specific alternative splicing switch of exon 2 during cartilage development.  相似文献   

6.
Alternative splicing of the human immunodeficiency virus type 1 (HIV-1) genomic mRNA produces more than 40 unique viral mRNA species, of which more than half remain incompletely spliced within an HIV-1-infected cell. Regulation of splicing at HIV-1 3' splice sites (3'ss) requires suboptimal polypyrimidine tracts, and positive or negative regulation of splicing occurs through binding of cellular factors to cis-acting splicing regulatory elements. We have previously shown that splicing at HIV-1 3'ss A2, which produces vpr mRNA and promotes inclusion of HIV-1 exon 3, is repressed by the hnRNP A/B-dependent exonic splicing silencer ESSV. Here we show that ESSV activity downstream of 3'ss A2 is localized to a 16-nucleotide element within HIV-1 exon 3. HIV-1 replication was reduced by 95% when ESSV was inactivated by mutagenesis. Reduced replication was concomitant with increased inclusion of exon 3 within spliced viral mRNA and decreased accumulation of unspliced viral mRNA, resulting in decreased cell-associated p55 Gag. Prolonged culture of ESSV mutant viruses resulted in two independent second-site reversions disrupting the splice sites that define exon 3, 3'ss A2 and 5' splice site D3. Either of these changes restored both HIV-1 replication and regulated viral splicing. Therefore, inhibition of HIV-1 3'ss A2 splicing is necessary for HIV-1 replication.  相似文献   

7.
8.
Splicing of the K-SAM alternative exon of the fibroblast growth factor receptor 2 gene is heavily dependent on the U-rich sequence IAS1 lying immediately downstream from its 5' splice site. We show that IAS1 can activate the use of several heterologous 5' splice sites in vitro. Addition of the RNA-binding protein TIA-1 to splicing extracts preferentially enhances the use of 5' splice sites linked to IAS1. TIA-1 can provoke a switch to use of such sites on pre-mRNAs with competing 5' splice sites, only one of which is adjacent to IAS1. Using a combination of UV cross-linking and specific immunoprecipitation steps, we show that TIA-1 binds to IAS1 in cell extracts. This binding is stronger if IAS1 is adjacent to a 5' splice site and is U1 snRNP dependent. Overexpression of TIA-1 in cultured cells activates K-SAM exon splicing in an IAS1-dependent manner. If IAS1 is replaced with a bacteriophage MS2 operator, splicing of the K-SAM exon can no longer be activated by TIA-1. Splicing can, however, be activated by a TIA-1-MS2 coat protein fusion, provided that the operator is close to the 5' splice site. Our results identify TIA-1 as a novel splicing regulator, which acts by binding to intron sequences immediately downstream from a 5' splice site in a U1 snRNP-dependent fashion. TIA-1 is distantly related to the yeast U1 snRNP protein Nam8p, and the functional similarities between the two proteins are discussed.  相似文献   

9.
We have previously demonstrated that an exon splicing silencer (ESS) is present within human immunodeficiency virus type 1 (HIV-1)tat exon 2. This 20 nucleotide (nt) RNA element acts selectively to inhibit splicing at the upstream 3'splice site (3'ss #3) flanking this exon. In this report, we have used in vitro splicing of mutated RNA substrates to determine the sequences necessary and sufficient for the activity of the ESS. The activity of the ESS within tat exon 2 maps to a 10 nt core sequence CUAGACUAGA. This core sequence was sufficient to inhibit splicing when inserted downstream from the 3'ss of the heterologous Rous sarcoma virus src gene. Mutagenesis of the interspersed purines in the polypyrimidine tract of the tat exon 2 3'ss to pyrimidines resulted in a significant increase in splicing efficiency indicating that 3'ss#3 is suboptimal. The ESS acts to inhibit splicing at the optimized 3'splice sites of both the HIV-1 tat and RSV src constructs but with a reduced efficiency compared to its effect on suboptimal 3'splice sites. The results indicate that both the ESS and a suboptimal 3'splice site act together to control splicing at the 3'splice site flanking at exon 2.  相似文献   

10.
One characteristic linking members of the synaptotagmin family to endocytosis is their ability to bind the heterotetrameric AP2 complex via their C2B domain. By using CD4/synaptotagmin 1 chimeras, we found that the internalization signal of synaptotagmin 1 lies at the extreme COOH-terminus of the protein and can function in the absence of the C2B domain that contains the AP2 binding site. However, although not essential for internalization, the C2B domain of synaptotagmin 1 appeared to control the recognition of the internalization motif. By mutagenesis, two sites have been identified that modify regulation by the C2B domain in the neuroendocrine PC12 cell line. Mutation of a dilysine motif in the beta sandwich core of the domain eliminates endocytosis. This site is known to be a site of protein-protein interaction. Mutations in the calcium binding region, or in its close proximity, also affect internalization in PC12 cells. In fibroblasts, the C2B domain inhibits the COOH-terminal internalization signal, resulting in an absence of internalization in those cells. Thus, internalization of synaptotagmin 1 is controlled by the presence of a latent internalization signal in the COOH-terminal region and a regulatory region in the C2B domain. We propose that internalization of synaptotagmin 1 is regulated in this way to allow it to couple the processes of endocytosis and calcium-mediated exocytosis in cells of the neuroendocrine lineage.  相似文献   

11.
A 5' splice site located in a 3' untranslated region (3'UTR) has been shown previously to inhibit gene expression. Natural examples of inhibitory 5' splice sites have been identified in the late 3'UTRs of papillomaviruses and are thought to inhibit viral late gene expression at early stages of the viral life cycle. In this study, we demonstrate that the interaction of the human immunodeficiency virus type 1 Rev protein with the Rev-responsive element (RRE) overcomes the inhibitory effects of a 5' splice site located within a 3'UTR. This was studied by using both a bovine papillomavirus type 1 L1 cDNA expression vector and a chloramphenicol acetyltransferase expression vector containing a 5' splice site in the 3'UTR. In both systems, coexpression of Rev enhanced cytoplasmic expression from vectors containing the RRE even when the RRE and the inhibitory 5' splice site were separated by up to 1,000 nucleotides. In addition, multiple copies of a 5' splice site in a 3'UTR were shown to act synergistically, and this effect could also be moderated by the interaction of Rev and the RRE. These studies provide additional evidence that at least one mechanism of Rev action is through interactions with the splicing machinery. We have previously shown that base pairing between the U1 small nuclear RNA and a 3'UTR 5' splice site is required for inhibition of gene expression. However, experiments by J. Kjems and P. A. Sharp (J. Virol. 67:4769-4776, 1993) have suggested that Rev acts on spliceosome assembly at a stage after binding of the U1 small nuclear ribonucleoprotein to the 5' splice site. This finding suggests that binding of additional small nuclear ribonucleoproteins, as well as other splicing factors, may be necessary for the inhibitory action of a 3'UTR 5' splice site. These data also suggest that expression of the papillomavirus late genes in terminally differentiated keratinocytes can be regulated by a viral or cellular Rev-like activity.  相似文献   

12.
Liu X  Mayeda A  Tao M  Zheng ZM 《Journal of virology》2003,77(3):2105-2115
Bovine papillomavirus type 1 (BPV-1) late pre-mRNAs are spliced in keratinocytes in a differentiation-specific manner: the late leader 5' splice site alternatively splices to a proximal 3' splice site (at nucleotide 3225) to express L2 or to a distal 3' splice site (at nucleotide 3605) to express L1. Two exonic splicing enhancers, each containing two ASF/SF2 (alternative splicing factor/splicing factor 2) binding sites, are located between the two 3' splice sites and have been identified as regulating alternative 3' splice site usage. The present report demonstrates for the first time that ASF/SF2 is required under physiological conditions for the expression of BPV-1 late RNAs and for selection of the proximal 3' splice site for BPV-1 RNA splicing in DT40-ASF cells, a genetically engineered chicken B-cell line that expresses only human ASF/SF2 controlled by a tetracycline-repressible promoter. Depletion of ASF/SF2 from the cells by tetracycline greatly decreased viral RNA expression and RNA splicing at the proximal 3' splice site while increasing use of the distal 3' splice site in the remaining viral RNAs. Activation of cells lacking ASF/SF2 through anti-immunoglobulin M-B-cell receptor cross-linking rescued viral RNA expression and splicing at the proximal 3' splice site and enhanced Akt phosphorylation and expression of the phosphorylated serine/arginine-rich (SR) proteins SRp30s (especially SC35) and SRp40. Treatment with wortmannin, a specific phosphatidylinositol 3-kinase/Akt kinase inhibitor, completely blocked the activation-induced activities. ASF/SF2 thus plays an important role in viral RNA expression and splicing at the proximal 3' splice site, but activation-rescued viral RNA expression and splicing in ASF/SF2-depleted cells is mediated through the phosphatidylinositol 3-kinase/Akt pathway and is associated with the enhanced expression of other SR proteins.  相似文献   

13.
14.
15.
Alternative splicing of exon 7B in the hnRNP A1 pre-mRNA produces mRNAs encoding two proteins: hnRNP A1 and the less abundant A1B. We have reported the identification of several intron elements that contribute to exon 7B skipping. In this study, we report the activity of a novel element, conserved element 9 (CE9), located in the intron downstream of exon 7B. We show that multiple copies of CE9 inhibit exon 7B-exon 8 splicing in vitro. When CE9 is inserted between two competing 3' splice sites, a single copy of CE9 decreases splicing to the distal 3' splice site. Our in vivo results also support the conclusion that CE9 is a splicing modulator. First, inserting multiple copies of CE9 into an A1 minigene compromises the production of fully spliced products. Second, one copy of CE9 stimulates the inclusion of a short internal exon in a derivative of the human beta-globin gene. In this case, in vitro splicing assays suggest that CE9 decreases splicing of intron 1, an event that improves splicing of intron 2 and decreases skipping of the short internal exon. The ability of CE9 to act on heterologous substrates, combined with the results of a competition assay, suggest that the activity of CE9 is mediated by a trans-acting factor. Our results indicate that CE9 represses the use of the common 3' splice site in the hnRNP A1 alternative splicing unit.  相似文献   

16.
17.
We have previously described several human immunodeficiency virus type 1 (HIV-1) mutants that are characterized by an excessive-RNA-splicing phenotype and reduced virus particle production. In one of these mutants (NLD2up), the sequence of 5′ splice site D2 was changed to a consensus splice donor site. This splice site overlaps the HIV-1 integrase reading frame, and thus, the NLD2up mutant also bears a G-to-W change at amino acid 247 of the integrase. A previously described E-to-K mutant at position 246 of the C-terminal domain of the integrase, which resulted in a G-to-A mutation at the +3 position of overlapping splice donor D2 (NLD2A3), was also shown to affect virus particle production and Gag protein processing. By using second-site mutations to revert the excessive-splicing phenotype, we show that the effects on Gag protein processing and virus particle production of both the NLD2up and NLD2A3 mutants are caused by excessive viral RNA splicing due to the activation of the overlapping 5′ splice site and not to the changes in the integrase protein. Both integrase protein mutations, however, are lethal for virus infectivity. These studies suggest that changes in the usage of overlapping splice sites may be a possible alternative explanation for a defective virus phenotype resulting from changes in protein-coding sequences or in the nucleotide sequence during codon optimization.  相似文献   

18.
In permissive Rous sarcoma virus-infected chicken embryo fibroblasts (CEF), approximately equimolar amounts of env and src mRNAs are present. In nonpermissive mammalian cells, the src mRNA level is elevated and env mRNA level is reduced. A cis element in the region between the env gene and the src 3' splice site, which we have termed the suppressor of src splicing (SSS), acts specifically in CEF but not in human cells to reduce src mRNA levels. The splicing inhibition in CEF is not caused by a base-paired structure which is predicted to form between the SSS and the src 3' splice site. To further investigate the mechanism of the inhibition, we have used human HeLa cell nuclear extracts to compare in vitro the rates of splicing of RNA substrates containing the Rous sarcoma virus major 5' splice site and either the env or src 3' splice sites. We show that the src 3' splice site is used approximately fivefold more efficiently than the env 3' splice site. The efficiency of in vitro splicing at the src 3' splice site is specifically reduced by addition of CEF nuclear extract. The inhibition is dependent on the presence of the SSS element and can be abrogated by addition of competitor RNA. We propose that the SSS region represents a binding site for a negative-acting CEF splicing factor(s).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号