首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
W H Braunlin  Q Xu 《Biopolymers》1992,32(12):1703-1711
Previous cation nmr evidence suggests that univalent cations such as Na+ bind to DNA in a diffuse, nonspecific manner, whereas di- and trivalent cations show distinct binding heterogeneity. Here are reported 59Co- and 23Na-nmr measurements of the %GC dependence of the DNA binding behavior of the trivalent hexaamminecobalt(III) cation. When Co(NH3)6Cl3 titrations are performed on one mammalian and three bacterial DNAs, evidence is found for at least three distinct classes of bound Co(NH3)6(3+). A comparison of titration curves for all four DNAs demonstrates that an increase in GC content correlates with an increase in the fraction of specific Co(NH3)6(3+). binding sites. For M. lysodeikticus DNA (72% GC), a slowly exchanging class of bound 59Co(NH3)6(3+) is apparent. This class of sites is saturated at very low binding densities (between 0.02 and 0.03 cobalt cations per DNA phosphate). At higher binding densities (greater than 0.03), the signal due to slowly exchanging 59Co(NH3)6(3+) disappears into the noise, and a single 59Co(NH3)6(3+) signal is observed. Within the sensitivity limitations of these measurements, no evidence for slowly exchanging bound 59Co(NH3)6(3+) could be found for any of the other DNAs, for which a single, rapidly exchanging 59Co(NH3)6(3+) signal is observed at all binding densities. For this rapidly exchanging signal, for all four DNAs, the measured 59Co(NH3)6(3+) nmr parameters depend significantly on (a) binding density and (b) GC content of the DNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Cadmium-113 and calcium-43 NMR spectra of Cd2+ and Ca2+ bound to the porcine intestinal calcium binding protein (ICaBP; Mr 9000) contain two resonances. The first resonance is characterized by NMR parameters resembling those found for these cations bound to proteins containing the typical helix-loop-helix calcium binding domains of parvalbumin, calmodulin, and troponin C, which are defined as EF-hands by Kretsinger [Kretsinger, R. H. (1976) Annu. Rev. Biochem. 45, 239]. The second resonance in both spectra has a unique chemical shift and is consequently assigned to the metal ion bound in the N-terminal site of ICaBP. This site is characterized by an insertion of a proline in the loop of the helix-loop-helix domain and will be called the pseudo-EF-hand site. The binding of Cd2+ to the apo form of ICaBP is sequential. The EF-hand site is filled first. Both binding sites have similar, but not identical, affinities for Ca2+: at a Ca2+ to protein ratio of 1:1, 65% of the ion is bound in the EF-hand site and 35% in the pseudo-EF-hand site. The two sites do not appear to act independently; thus, replacement of Ca2+ or Cd2+ by La3+ in the EF-hand site causes changes in the environment of the ions in the pseudo-EF-hand site. In addition, the chemical shift of Cd2+ bound to the EF-hand site is dependent on the presence or absence of Ca2+ or Cd2+ in the pseudo-EF-hand site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The 43Ca NMR line width measured for Ca2+ bound to protein A, an acidic proline-rich salivary protein, is 1 order of magnitude narrower than has previously been observed for other proteins of similar molecular weight. The correlation times, quadrupole coupling constants, and chemical shifts estimated for Ca2+ ions bound to the intact protein (Mr approximately 10 000) and its 30 amino acid residue long acidic N-terminal TX peptide were indistinguishable within experimental error. These results--as well as the outcome of 1H NMR relaxation rate measurements--are indicative of extensive motions for the protein residues, which in turn give rise to a high degree of flexibility for the protein-bound Ca2+. Ca2+ titration and pH-dependent measurements on protein A, the TX peptide, and the dephosphorylated TX peptide established the importance of the two phosphoserine residues in the binding of Ca2+. Moreover, a comparison of the 43Ca NMR parameters with those obtained for other Ca2+-binding proteins suggests the presence of Ca2+-binding sites of similar symmetry in all these proteins. No evidence was found for a proposed interaction between the highly acidic N-terminal and the weakly basic C-terminal regions of protein A. In contrast, the high pH inflection that was observed in the pH titration curve for the intact protein was also found for the phospho and dephospho TX peptides, thus suggesting that basic moieties in the N-terminal region rather than those in the C-terminal region may be responsible for this observation.  相似文献   

4.
Isothermal titration calorimetry (ITC) profiles of berenil bound to different DNAs show that, despite the strong preference of berenil for AT-rich regions in DNA, it can bind to other DNA sequences significantly. The ITC results were used to quantify the binding of berenil, and the thermodynamic profiles were obtained using natural DNAs as well as synthetic polynucleotides. ITC binding isotherms cannot be simply described when a single set of identical binding sites is considered, except for poly[d(A-T)2]. Ultraviolet melting of DNA and differential scanning calorimetry were also used to quantify several aspects of the binding of berenil to salmon testes DNA. We present evidence for secondary binding sites for berenil in DNA, corresponding to G+C rich sites. Berenil binding to poly[d(G-C)2] is also observed. Circular dichroism experiments showed that binding to GC-rich sites involves drug intercalation. Using a molecular modeling approach we demonstrate that intercalation of berenil into CpG steps is sterically feasible.  相似文献   

5.
The binding of ciprofloxacin to natural and synthetic polymeric DNAs was investigated at different solvent conditions using a combination of spectroscopic and hydrodynamic techniques. In 10 mM cacodylate buffer (pH 7.0) containing 108.6 mM Na(+), no sequence preferences in the interaction of ciprofloxacin with DNA was detected, while in 2 mM cacodylate buffer (pH 7.0) containing only 1.7 mM Na(+), a significant binding of ciprofloxacin to natural and synthetic linear double-stranded DNA was observed. At low ionic strength of solution, ciprofloxacin binding to DNA duplex containing alternating AT base pairs is accompanied by the largest enhancement in thermal stability (e.g. DeltaT(m) approximately 10 degrees C for poly[d(AT)].poly[d(AT)]), and the most pronounced red shift in the position of the maximum of the fluorescence emission spectrum (lambda(max)). Similar red shift in the position of lambda(max) is also observed for ciprofloxacin binding to dodecameric duplex containing five successive alternating AT base pairs in the row. On the other hand, ciprofloxacin binding to poly[d(GC)].poly[d(GC)], calf thymus DNA and dodecameric duplex containing a mixed sequence is accompanied by the largest fluorescence intensity quenching. Addition of NaCl does not completely displace ciprofloxacin bound to DNA, indicating the binding is not entirely electrostatic in origin. The intrinsic viscosity data suggest some degree of ciprofloxacin intercalation into duplex.  相似文献   

6.
The interaction of coralyne, an antitumour alkaloid with natural and synthetic duplex DNAs was investigated under conditions where the drug existed fully as a true monomer for the first time using spectrophotometric, spectrofluorimetric, circular dichroic and viscometric techniques. The absorption spectrum of coralyne monomer showed hypochromic and bathochromic effects on binding to duplex DNAs. This effect was used to determine the binding parameters of coralyne. The binding constants for four natural DNAs and four synthetic polynucleotides obtained from spectrophotometric titration, according to an excluded site model, using McGhee-von Hippel analysis, were all in the range of (0.38-9.8) x 10(5) M-1, and showed a relatively high specificity for the GC rich ML DNA and the alternating GC polynucleotide. The binding of coralyne decreased with increasing ionic strength, indicating that the binding affinity has a strong electrostatic component. Coralyne stabilized all the DNAs against thermal strand separation. The intense steady state fluorescence of coralyne was effectively quenched on binding to DNAs and the quantitative data on the Stern-Volmer quenching constant obtained was sequence dependent, being maximum with the GC rich DNA and alternating GC polymer. Circular dichriosm studies further evidenced for a strong perturbation of the B-conformation of DNAs consequent to coralyne binding with the concomitant development of extrinsic circular dichroic bands for the bound drug molecules suggesting their strong intercalated geometry in duplex DNAs. Further tests of intercalation using viscosity measurements on linear and covalently closed plasmid DNA conclusively proved the strong intercalation of coralyne in duplex DNA. Binding of the closely related natural alkaloid, berberine under these conditions showed considerably lower affinity to duplex DNAs in all experiments. Taken together, these results suggest that coralyne binds strongly to duplex DNAs by a mechanism of intercalation with specificity towards alternating GC duplex structure.  相似文献   

7.
Calbindin-D28K is a 1 alpha,25-dihydroxyvitamin D3-dependent protein that belongs to the superfamily of high affinity calcium-binding proteins which includes parvalbumin, calmodulin, and troponin C. All of these proteins bind Ca2+ ligands by an alpha-helix-loop-alpha-helix domain that is termed an EF-hand. Calbindin-D28K has been reported previously to have four high affinity Ca2(+)-binding sites (KD less than 10(-7)) as quantitated by equilibrium dialysis. With the determination of the amino acid sequence, it was clear that there are in fact six apparent EF-hand domains, although the Ca2(+)-binding functionality of the two additional domains was unclear. It was of interest to quantitate the Ca2(+)-binding ability of chick intestinal calbindin-D28K utilizing several different Ca2+ titration methods that cover a range of macroscopic binding constants for weak or strong Ca2+ sites. Titrations with the Ca2+ chelator dibromo-1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (5,5'-Br2BAPTA), a Ca2+ selective electrode, and as followed by 1H NMR, which measure KD values of 10(-6)-10(-8) M, 10(-4)-10(-7) and 10(-3)-10(-5) M, respectively, gave no evidence for the presence of weak Ca2(+)-binding sites. However, Ca2+ titration of the fluorescent Ca2+ chelator Quin 2 in the presence of calbindin-D28K yielded a least squares fit optimal for 5.7 +/- 0.8 Ca2(+)-binding sites with macroscopic dissociation constants around 10(-8) M. The binding of Ca2+ by calbindin was found to be cooperative with at least two of the sites exhibiting positive cooperativity.  相似文献   

8.
The calcium binding by parvalbumin of whiting (Gadus merlangus) has been studied using tryptophanyl fluorescence characteristics. Titration of Ca2+-free parvalbumin with Ca2+ leads to a very pronounced blue shift, narrowing and intensification of the fluorescence spectrum. These spectral changs proceed in two stages reflecting the existence of at least three forms which can be interpreted as (a) the protein without Ca2+, (b) with one Ca2+ and (c) with two bound Ca2+ ions/molecule. The fluorescence of these forms has been identified and the fluorescence spectra measured at varied Ca2+ concentrations were resolved into three components corresponding to these spectral forms. The dependence of the relative concentration of the three fomrs on Ca2+ concentrations agree well with the two-step binding of Ca2+ to parvalbumin: Protein + Ca in equilibrium K1 protein x Ca; Protein x Ca + Ca in equilibrium K2 Ca x protein x Ca. The equilibrium binding constants K1 and K2 obtained by the computer fit are approximately 5 X 10(8) M-1 and 6 X 10(6) M-1. This scheme and the K1 and K2 value are in a good agreement with the independent experimental data resulting from EGTA titration of Ca2+-saturated parvalbumin and pH titratin of parvalbumin in the presence of EGTA and CA2+.  相似文献   

9.
Divalent metal ions are essential for maintaining functional states of the DNA molecule. Their participation in DNA structure is modulated by the base sequence and varies depending on the nature of the ion. The present investigation addresses the interaction of Ca2+ ions with a tandem repeat of two CA dinucleotides, (CA)2/(TG)2. The binding of Ca2+ to the repeat is monitored by nuclear magnetic resonance (NMR) spectroscopy using chemical shift mapping. Parallel experiments monitor binding of Mg2+ ions to the repeat as well as binding of each ion to a DNA duplex in which the (CA)2/(TG)2 repeat is eliminated. The results reveal that the direction and the magnitude of chemical shift changes induced by Ca2+ ions in the NMR spectra of the repeat are different from those induced by Mg2+ ions. The differences between the two cations are significantly diminished by the elimination of the (CA)2/(TG)2 repeat. These findings suggest a specific interaction of Ca2+ ions with the (CA)2/(TG)2 motif. The specificity of the interaction resides in the two A-T base pairs of the repeat, and it involves the major groove of the first A-T base pair and both grooves of the second A-T base pair.  相似文献   

10.
11.
The temperature-jump method has been used to compare the binding of 2-N methyl ellipticinium (NME) and 2-N methyl 9 hydroxy ellipticinium (NMHE) to three natural DNA's of different AT/GC composition. The relaxation signals, analyzed by the Padé-Laplace method, are characterized by two distinct relaxation times, tau 1 and tau 2, respectively in the 1-4 ms and 20-80 ms range. In the case of the NMHE/DNA interaction, the slower relaxation time tau 2 depends on the DNA composition, as follows: tau 2 (Micrococcus lysodeikticus) greater than tau 2 (Calf thymus) greater than tau 2 (Clostridium perfringens). Contrary to NMHE, NME which does not possess an OH group at the C-9 position, shows no relaxation time dependence upon DNA base composition. The observation of two relaxation times indicates that the binding equilibria are associated with at least two distinct drug/DNA complexes (probably arising from two distinct DNA binding sites). Three kinetic models, involving the formation of a weak intermediate ionic complex, are given to explain the binding reaction between these cationic drugs and the DNA. They allow the determination of the four rate constants associated with the two binding steps and lead to equilibrium association constants in agreement with those obtained from spectroscopic studies. The validity of the models is discussed and it is shown that the best kinetic scheme, for either NMHE or NME, could be that in which the ionic step is not a prerequiste to intercalation. The kinetic results show that the residence time of 9 hydroxy ellipticinium is markedly increased in GC rich DNA's and this could be related to the higher in vitro and in vivo cytotoxic properties of 9 hydroxy substituted ellipticines.  相似文献   

12.
The interaction of fluoroquinacrine, 3-fluoro-7-chloro-9-(diethylamino-1-methylbutyl-amino)acridine, with poly(A), DNA, and tRNA has been investigated by monitoring changes in the 19F-nmr properties, the fluorescence, and the optical absorbance of the drug. The changes in the properties of fluoroquinacrine in the presence of nucleic acids are similar to those observed for quinacrine and suggest that the drugs bind in a similar fashion. The molecular dynamics of fluoroquinacrine bound to nucleic acids were determined by interpreting the data from a number of different nmr relaxation experiments with a two-correlation-time model. The two motions are the long-range bending motion of the drug-nucleic acid complex and the sliding of the drug between the base pairs. Both dipolar and chemical shift anisotropy contributions to the nmr relaxation parameters were taken into consideration. The binding of fluoroquinacrine to tRNA appears to be different from that observed for binding to DNA. Optical absorbance and 19F-nmr were also used to examine the helix-to-coil transitions of the drug–nucleic acid complexes. In the DNA complex, the 19F chemical shift changes parallel the absorption changes that occur during the transition. 19F-nmr and absorption show that the drug–tRNA complexes undergo a cooperative helix-to-coil transition, with the drug binding sites melting when the tRNA is 70% denatured.  相似文献   

13.
Edema factor (EF), a toxin from Bacillus anthracis (anthrax), possesses adenylyl cyclase activity and requires the ubiquitous Ca2+-sensor calmodulin (CaM) for activity. CaM can exist in three major structural states: an apo state with no Ca2+ bound, a two Ca2+ state with its C-terminal domain Ca2+-loaded, and a four Ca2+ state in which the lower Ca2+ affinity N-terminal domain is also ligated. Here, the interaction of EF with the three Ca2+ states of CaM has been examined by NMR spectroscopy and changes in the Ca2+ affinity of CaM in the presence of EF have been determined by flow dialysis. Backbone chemical shift perturbations of CaM show that EF interacts weakly with the N-terminal domain of apoCaM. The C-terminal CaM domain only engages in the interaction upon Ca2+ ligation, rendering the overall interaction much tighter. In the presence of EF, the C-terminal domain binds Ca2+ with higher affinity, but loses binding cooperativity, whereas the N-terminal domain exhibits strongly reduced Ca2+ affinity. As judged by chemical shift differences, the N-terminal CaM domain remains bound to EF upon subsequent Ca2+ ligation. This Ca2+ dependence of the EF-CaM interaction differs from that observed for most other CaM targets, which normally interact only with the Ca2+-bound CaM domains and become active following the transition to the four Ca2+ state.  相似文献   

14.
Human NEFA is an EF-hand, leucine zipper protein containing a signal sequence. To confirm the calcium binding capacity of NEFA, recombinant NEFA analogous to the mature protein and mutants with deletions in the EF-hand domain were expressed in Pichia pastoris and secreted into the culture medium at high yield. The calcium binding activity of each purified protein was measured by a modified equilibrium dialysis using the fluorescent Ca2+ indicator FURA-2 and atomic absorption spectroscopy. A stoichiometry of 2 mol Ca2+/mol NEFA was determined. The Ca2+ binding constants were resolved by intrinsic fluorescence spectroscopy. Fluorescence titration exhibited two classes of Ca2+ binding sites with Kd values of 0.08 microM and 0.2 microM. Circular dichroism (CD) spectroscopy showed an increase from 30 to 43% in the amount of alpha-helix in NEFA after addition of calcium ions. Limited proteolytic digestion indicated a Ca2+ dependent conformational change accompanied by an altered accessibility to the enzyme.  相似文献   

15.
The deoxyribonucleic acid (DNA) binding characteristics of adriamycin and several new anthracycline glycosides, including marcellomycin, aclacinomycin, rudolfomycin, musettamycin, and pyrromycin, have been studied. The fluorescence spectra were determined for all six anthracyclines, and the fluorescence quenching effects caused by interactions with the natural DNAs poly(dAdT)--poly(dAdT) and poly(dGdC) were characterized. Binding parameters were determined by Scatchard analyses of results obtained by spectrofluorometric titrations of anthracyclines with DNA. Consistent with earlier structure--activity relationship studies of nucleic acid synthesis inhibitory effects, the results demonstrate a correlation between the length of the glycosidic side chain and DNA binding affinity. In addition, the sugar residue 2-deoxyfucose appears to confer greater DNA binding ability than do the sugars rednosamine and cinerulose when present in the terminal position of the glycosidic side chain, also in agreement with earlier studies. The sequence preference of anthracycline--DNA interaction has been examined by using DNAs of varying GC content, including the naturally occurring calf thymus DNA (43% GC), Clostridium perfringens DNA (28% GC), and Micrococcus luteus DNA (72% GC) and the synthetic double-stranded copolymers poly(dGdC)--poly(dGdC) and poly(dAdT)--POLY(DAdT). The results demonstrate that although adriamycin shows an absolute requirement for GC sequences for DNA binding, marcellomycin and its analogues showed no such sequence requirement. Furthermore, an AT preference for DNA binding was demonstrated with marcellomycin and its analogues.  相似文献   

16.
S100A13 is a member of the S100 protein family that is involved in the copper-dependent nonclassical secretion of signal peptideless proteins fibroblast growth factor 1 and interleukin 1 lpha. In this study, we investigate the effects of interplay of Cu2+ and Ca2+ on the structure of S100A13 using a variety of biophysical techniques, including multi-dimensional NMR spectroscopy. Results of the isothermal titration calorimetry experiments show that S100A13 can bind independently to both Ca2+ and Cu2+ with almost equal affinity (Kd in the micromolar range). Terbium binding and isothermal titration calorimetry data reveal that two atoms of Cu2+/Ca2+ bind per subunit of S100A13. Results of the thermal denaturation experiments monitored by far-ultraviolet circular dichroism, limited trypsin digestion, and hydrogen-deuterium exchange (using 1H-15N heteronuclear single quantum coherence spectra) reveal that Ca2+ and Cu2+ have opposite effects on the stability of S100A13. Binding of Ca2+ stabilizes the protein, but the stability of the protein is observed to decrease upon binding to Cu2+. 1H-15N chemical shift perturbation experiments indicate that S100A13 can bind simultaneously to both Ca2+ and Cu2+ and the binding of the metal ions is not mutually exclusive. The results of this study suggest that the Cu2+-binding affinity of S100A13 is important for the formation of the FGF-1 homodimer and the subsequent secretion of the signal peptideless growth factor through the nonclassical release pathway.  相似文献   

17.
The fluorescence of the cation auramine O was substantially enhanced by the presence of actin monomer. Titrations of this fluorescence enhancement indicated that actin monomer had two auramine O binding sites, each with a dissociation constant of approx. 20 microM. Calcium ions had no effect on the number of actin monomer-bound auramine O molecules or on the dissociation constant for that interaction. However, calcium ions increased the maximum change of fluorescence that occurs when actin monomer was fully saturated with auramine O. This effect of calcium was saturable and yielded a Ca2+ dissociation constant of 1.6 mM. It was concluded that auramine O bound to sites on actin monomer and independently monitored the binding of Ca2+ ion(s) to other site(s) on actin monomer. Further, the magnitude of the Ca2+ dissociation constant suggested that this Ca2+-binding site may be representative of the multiple bivalent cation-binding sites on actin monomer which are thought to be directly involved in actin polymerization. However, the exact relationship between these sites remains unclear.  相似文献   

18.
The equilibrium binding of the cytotoxic plant alkaloid berberine to various DNAs and energetics of the interaction have been studied. At low ratios of bound alkaloid to base pair, the binding exhibited cooperativity to natural DNAs having almost equal proportions of AT and GC sequences. In contrast, the binding was non-cooperative to DNAs with predominantly high AT or GC sequences. Among the synthetic DNAs, cooperative binding was observed with poly(dA).poly(dT) and poly(dG).poly(dC) while non-cooperative binding was seen with poly(dA-dT).poly(dA-dT) and poly(dG-dC).poly(dG-dC). Both cooperative and non-cooperative bindings were remarkably dependent on the salt concentration of the media. Linear plots of ln K(a) versus [Na(+)] for poly(dA).poly(dT) and poly(dA-dT).poly(dA-dT) showed the release of 0.56 and 0.75 sodium ions respectively per bound alkaloid. Isothermal titration calorimetry results revealed the binding to be exothermic and favoured by both enthalpy and entropy changes in all DNAs except the two AT polymers and AT rich DNA, where the same was predominantly entropy driven. Heat capacity values (DeltaCp(o)) of berberine binding to poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), Clostridium perfringens and calf thymus DNA were -98, -140, -120 and -110 cal/mol K respectively. This study presents new insights into the binding dependent base pair heterogeneity in DNA conformation and the first complete thermodynamic profile of berberine binding to DNAs.  相似文献   

19.
The binding heterogeneity, conformational aspects, and energetics of the interaction of the cytotoxic plant alkaloid palmatine have been studied with various natural and synthetic DNAs. The alkaloid binds to calf thymus and Escherichia coli DNA that have mixed AT and GC sequences in almost equal proportions with positive cooperativity, while, with Clostridium perfringens and Micrococcus lysodeikticus DNA with predominantly high AT and GC sequences, respectively, noncooperative binding was observed. On further investigation with synthetic DNAs, the binding was observed to be cooperative with polymers like poly(dA).poly(dT) and poly(dG).poly(dC) having poly(purine)poly(pyrimidine) sequences, while with polymers poly(dA-dT).poly(dA-dT), poly(dA-dC).poly(dG-dT) and poly(dG-dC).poly(dG-dC), which have alternating purine-pyrimidine sequences, a non-cooperative binding phenomenon was observed. This suggests the binding heterogeneity of palmatine to the two types of sequences of base pairs. Circular dichroism (CD) studies revealed that the binding induced conformational changes in all the DNAs, but more importantly, the bound alkaloid molecules acquired induced optical activity, and the extent was dependent on the AT content and showed AT base-pair specificity. Energetics of the interaction of the alkaloid studied by highly sensitive isothermal titration calorimetry revealed that the binding was in most cases exothermic and favored by both enthalpy and entropy changes, while, in the case of the homo and hetero AT polymers, the same was predominantly entropy-driven. This study defines base-pair-dependent heterogeneity, conformational aspects, and energetics of palmatine binding to DNA.  相似文献   

20.
High-field 43Ca-nmr is applied to characterize the interactions of calcium ions with double-helical DNA. Under the conditions examined, 43Ca lineshapes are always Lorentzian and single spin-lattice relaxation rates are obtained. The measured transverse and longitudinal relaxation rates are, however, not equal, which implies that the relaxation is in the near-extreme narrowing regime. Relative to the transverse relaxation rate, calcium ions near the DNA exchange rapidly with the bulk solution. The 43Ca linewidths, spin-lattice relaxation rates, and chemical shifts observed over the course of a titration of DNA with calcium salt are not well described by simple electrostatic models. Deviations are most pronounced at low ratios of calcium to DNA phosphate. In contrast, at higher Ca/P ratios, the changes observed are well described by an electrostatic model based on the Poisson–Boltzmann equation. These results suggest that there is a small class of site-bound calcium as well as a large background of delocalized calcium electrostatically associated with the DNA. In contrast to previous studies of 25Mg2+–DNA interactions, for which significant site-binding effects were also indicated, it appears rather easy to displace bound 43Ca2+ by competition with sodium or magnesium cations. Unfortunately, neither these earlier results nor the present work allows a precise quantitation of the extent of site-bound divalent cation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号